This research explores the advancement of Artificial Intelligence (AI) in Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role in mitigating the global incidence of occupational incidents and diseases, which result in approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in completely preventing workplace incidents, primarily due to limitations in human-operated risk assessments and management. The integration of AI technologies has been instrumental in automating hazardous tasks, enhancing real-time monitoring, and improving decision-making through comprehensive data analysis. Specific AI applications discussed include drones and robots for risky operations, computer vision for environmental monitoring, and predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are enhancing training protocols, significantly improving both the safety and efficiency of workers. Various studies supporting the effectiveness of these AI applications indicate marked improvements in risk management and incident prevention. By transitioning from reactive to proactive safety measures, the implementation of AI in OHS represents a transformative approach, aiming to substantially reduce the global burden of occupational injuries and fatalities in high-risk sectors.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
Copyright © by EnPress Publisher. All rights reserved.