The current manuscript overviews the potential of inimitable zero dimensional carbon nanoentities, i.e., nanodiamonds, in the form of hybrid nanostructures with allied nanocarbons such as graphene and carbon nanotube. Accordingly, two major categories of hybrid nanodiamond nanoadditives have been examined for nanocompositing, including nanodiamond-graphene or nanodiamond/graphene oxide and nanodiamond/carbon nanotubes. These exceptional nanodiamond derived bifunctional nanocarbon nanostructures depicted valuable structural and physical attributes (morphology, electrical, mechanical, thermal, etc.) owing to the combination of intrinsic features of nanodiamonds with other nanocarbons. Consequently, as per literature reported so far, noteworthy multifunctional hybrid nanodiamond-graphene, nanodiamond/graphene oxide, and nanodiamond/carbon nanotube nanoadditives have been argued for characteristics and potential advantages. Particularly, these nanodiamond derived hybrid nanoparticles based nanomaterials seem deployable in the fields of electromagnetic radiation shielding, electronic devices like field effect transistors, energy storing maneuvers namely supercapacitors, and biomedical utilizations for wound healing, tissue engineering, biosensing, etc. Nonetheless, restricted research traced up till now on hybrid nanodiamond-graphene and nanodiamond/carbon nanotube based nanocomposites, therefore, future research appears necessary for further precise design varieties, large scale processing, and advanced technological progresses.
In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
E-commerce plays an important role in many organizations and businesses, including small and medium-sized enterprises (SMEs). Although the body of scientific knowledge carries significant research in addressing the main drivers and challenges of e-commerce among SMEs, the Saudi market was untouched, especially after the official Saudi government classification of SMEs back in December of 2016. Therefore, this study aims to explore the most common factors and challenges of SMEs when utilizing e-commerce in Saudi Arabia. It focused on Jeddah City as the second-largest city and the main seaport of the country. This research is based on a quantitative survey carried out among 63 firms, due to the difficulty in reaching a larger number of participants who had dedicated time and budget. The examined factors were collected from the literature and classified using the Technology, Organization, and Environment Model (TOE). Out of 63 firms, only six were adopting e-commerce. This led us to focus more on the challenges that hindered the remaining 57 from utilizing e-commerce. The analysis results uncovered the status of e-commerce among a sample of Saudi SMEs and showed that the knowledge and awareness level of e-commerce potential for businesses play a significant factor in reaching this incredibly low number.
The article’s proposed engineering uses are based on theories presented in the reviewed research articles and on findings from online investigations into companies that claim to use nanoengineering in their wares. Several pre-existing online consumer inventories and nanotechnology news were examined as part of the internet inquiry. The data about the nanoparticles (NP), or nanostructure, used in commercially available products comes from the remarks made by the manufacturer. Nanoengineered coating agents and textile additives are examples of commercial items developed for industrial clients that fall under the aforementioned uses.
A fresh interest has been accorded to metal iodides due to their fascinating physicochemical properties such as high ionic conductivity, variable optical properties, and high thermal stabilities in making micro and macro devices. Breakthroughs in cathodic preparation and metallization of metal iodides revealed new opportunities for using these compounds in various fields, especially in energy conversion and materials with luminescent and sensory properties. In energy storage metal iodides are being looked at due to their potential to enhance battery performance, in optoelectronics the property of the metal iodides is available to create efficient LEDs and solar cells. Further, their application in sensing devices, especially in environmental and medical monitoring has been quite mentioned due to their response towards environmental changes such as heat or light. Nevertheless, some challenges are still in question, including material stability, scale-up opportunities, and compatibility with other technologies. This work highlights the groundbreaking potential of metal iodide-based nanomaterials, emphasizing their transformative role in innovation and their promise for future advancements.
Copyright © by EnPress Publisher. All rights reserved.