Gold nanoparticles (AuNPs) have been known to possess exceptional electric, biochemical, and optical characteristics and are ‘the topic of discussion’ these days, especially relating to the field of biomedicine. Several plants, bacteria, and fungi have been utilized for the generation of AuNPs, besides other physical and chemical methods. While some studies have been reported with gold nanoparticles, less are aimed at fungi and its optimization factors. These parameters can allow us to design AuNPs of our choice depending on the use. The present review focuses on and inspects AuNPs with green synthesis through fungus optimization parameters followed by applications, aiming specifically at their antibacterial activity. Their antibacterial characteristics can open new doors for the pharmaceutical industry in the future.
Fungi can be used to remove or degrade polluting compounds through a mycoremediation process. Sometimes even more efficiently than prokaryotes, they can therefore be used to combat pollution from non-biodegradable polymers. Cellulose acetate is a commonly used material in the manufacture of cigarette butts, so when discarded, it generates pollution. The fungus Pleurotus ostreatus has the ability to degrade cellulose acetate through the enzymes it secretes. The enzyme hydrolyzes the acetyl group of cellulose acetate, while cellulolytic enzymes degrade the cellulose backbone into sugars, polysaccharides, or cellobiose. In addition to cellulose acetate, this fungus is capable of degrading other conventionally non-biodegradable polymers, so it has the potential to be used to reduce pollution. Large-scale cultivation of the fungus has proven to be more economically viable than conventional methods for treating non-biodegradable polymers, which is an additional advantage.
Urban trees are one of the valuable storage in metropolitan areas. Nowadays, a particular attention is paid to the trees and spends million dollars per year to their maintenance. Trees are often subjected to abiotic factors, such as fungi, bacteria, and insects, which lead to decline mechanical strength and wood properties. The objective of this study was to determine the potential degradation of Elm tree wood by Phellinus pomaceus fungi, and Biscogniauxia mediteranae endophyte. Biological decay tests were done according to EN 113 standard and impact bending test in accordance with ASTM-D256-04 standard. The results indicated that with longer incubation time, weight loss increased for both sapwood and heartwood. Fungal deterioration leads to changes in the impact bending. In order to manage street trees, knowing tree characteristics is very important and should be regularly monitored and evaluated in order to identify defects in the trees.
Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote the solubilization of insoluble phosphate complexes, together benefiting plant nutrition. The use of these organisms in combination with minerals or rocks that provide nutrients is another alternative to maintain crop productivity. The objective of this work was to combine AMF and S with pyroclastic materials (ashes and pumicites) from the Puyehue volcano and phosphoric rocks (PR) from the Río Chico Group (Chubut) and to evaluate the performance of these mixtures as substrates for potted production of Lactuca sativa. To formulate the substrates, a mixture of Ter-rafertil® with ashes was used as a base. Penicillium thomii was the S and spores of the fungus Rhizophagus intraradices (AEGIS® Irriga) served as the source of AMF. Various combinations of microorganisms and the addition or not of RP were evaluated. The treatments were: (1) substrate; (2) substrate + AMF; (3) substrate + S; (4) substrate + AMF + S; (5) substrate: PR; (6) substrate: PR + AMF; (7) substrate: PR + S, and (8) substrate: PR + AMF + S. There were 3 replicates per treatment. The parameters evaluated were total and assimilable P content in the substrate, P in plant tissue and dry biomass. All of them were significantly higher in the plants grown in the substrate added with PR and inoculated with S and AMF. This work confirms that the S/AMF combination with volcanic ashes from Puyehue and PR from Grupo Río Chico formulated with a commercial substrate promote the growth of L. sativa. Thus, it is possible to increase the added value of geomaterials of national origin.
Yam (Dioscorea sp.) is a popular tuber in Cameroon, where it is grown for both food and income. One of the most challenging aspects of the long-term storage of yam tubers is post-harvest spoilage, often caused by fungi. The use of post-harvest chemicals on yam tubers is not a matter of course. The present study evaluated the efficacy of aqueous extract and powder of Zingiber officinale against fungi associated with the storage rot of yam. The fungi were isolated from two yam cultivars, “Calabar” and “Ghana”, from three localities in Cameroon. The antifungal activity of the aqueous extract and ginger powder was studied in vivo on slices of yam tubers. The results obtained showed that eight fungi were associated with yam tubers and exhibited typical rotting symptoms. The most prevalent and virulent fungus was Penicillium sp., which caused decay volumes of 12.76 cm3 and 8.74 cm3 for “Calabar” and “Ghana” cultivars, respectively. Fungal spoilage was greatly reduced by the application of aqueous extract and ginger powder. The aqueous extract tested at the 30% dose was more effective with up to 80% inhibition. However, the ginger powder was more effective against Penicillium sp., Aspergillus niger, and Colletotrichum sp. associated with rot in the variety “Ghana” with total inhibition (100%). Therefore, the aqueous extracts and powder of Zingiber officinale can be used as a bio fungicide to improve the shelf life of yam tubers.
An alternative for sustainable management in the cultivation of Capsicum annuum L. has focused on the use of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This research selected PGPRPGPR and AMF based on their effect on Bell Pepper and Jalapeño bell pepper plants. Five bacterial strains isolated from different localities in the state of Mexico (P61 [Pseudomonas tolaasii], A46 [P. tolaasii], R44 [Bacillus pumilus], BSP1.1 [Paenibacillus sp.] and OLs-Sf5 [Pseudomonas sp.]) and 3 AMF treatments (H1 [consortium isolated from Chile rhizosphere in the state of Puebla], H2 [Rhizophagus intraradices] and H3 [consortium isolated from lemon rhizosphere from the state of Tabasco]). In addition, a fertilized treatment (Steiner solution 25%) and an absolute control were included. Jalapeño bell pepper “Caloro” and Bell Pepper “California Wonder” seedlings were inoculated with AMF at sowing and with CPB 15 days after emergence, and grown under controlled environment chamber conditions. In Jalapeño bell pepper, the best bacterial strain was P61 and the best AMF treatment was H1; in Bell Pepper the best strain was R44 and the best AMF were H3 and H1. These microorganisms increased the growth of jalapeño bell pepper and Bell Pepper seedlings compared to the unfertilized control. Likewise, P61 and R44 positively benefited the photosynthetic capacity of PSII.
Copyright © by EnPress Publisher. All rights reserved.