This research explores the impact of employee green behavior on green transformational leadership (GTL) and green human resource management (GHRM), and their subsequent effects on sustainable performance within organizations. Utilizing a sample of 482 environmental quality promotion departments across Thailand, the study employs stratified random sampling to ensure representative data collection. Analysis was conducted using SPSS software, applying Ordinary Least Squares (OLS) regression to test the hypothesized relationships between the variables. The findings reveal a positive and significant influence of employee green behavior on both GTL and GHRM. Additionally, both GTL and GHRM are found to positively correlate with sustainable performance, indicating that enhanced leadership and management practices in the environmental domain can lead to better sustainability outcomes. This research utilizes the Ability-Motivation-Opportunity (AMO) theory as its theoretical framework, illustrating how organizations can leverage strategic HRM practices to promote environmental consciousness and action among employees, thereby enhancing their long-term sustainability success. Implications of this study underscore the importance of integrating green practices into leadership and HRM strategies, advocating for targeted training programs and energy conservation measures to boost environmental awareness and performance in the workplace. This contributes to the literature on sustainable performance by providing empirical evidence of the pathways through which green HRM and transformational leadership foster a sustainable organizational environment.
Enhancing the emphasis on incorporating sustainable practices reinforces a linear transition towards a circular economy by organizations. Nevertheless, although studies on circular economy demonstrate an increasing trend, the drivers that support circular economy practices towards sustainable business performance in the Small and Medium-Sized Enterprise (SME) sector, especially in developing nations, demand exploration. Accordingly, the study examines circular economy drivers, i.e., green human resource management, in establishing sustainability performance and environmental dynamism as moderating variables. The study engaged 207 SMEs and 621 respondents who were analyzed utilizing structural equation modeling. The analysis indicated that sustainable business performance was affected by green human resource management and a circular economy. Subsequently, the circular economy mediated the linkage between green human resources management and sustainable business performance. The environmental dynamism moderated the linkage between green human resources management and the circular economy.
To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
Gold nanoparticles (AuNPs) have been known to possess exceptional electric, biochemical, and optical characteristics and are ‘the topic of discussion’ these days, especially relating to the field of biomedicine. Several plants, bacteria, and fungi have been utilized for the generation of AuNPs, besides other physical and chemical methods. While some studies have been reported with gold nanoparticles, less are aimed at fungi and its optimization factors. These parameters can allow us to design AuNPs of our choice depending on the use. The present review focuses on and inspects AuNPs with green synthesis through fungus optimization parameters followed by applications, aiming specifically at their antibacterial activity. Their antibacterial characteristics can open new doors for the pharmaceutical industry in the future.
Copyright © by EnPress Publisher. All rights reserved.