Developing Asia’s infrastructure gap results from both inadequate public resources and a lack of effective channels to mobilize private resources toward desired outcomes. The public-private partnership (PPP) mechanism has evolved to fill the infrastructure gap. However, PPP projects are often at risk of becoming distressed, or worst, being terminated because of the long-term nature of contracts and the many different stakeholders involved. This paper applies survival-time hazard analysis to estimate how project-related, macroeconomic, and institutional factors affect the hazard rate of the projects. Empirical results show that government’s provision of guarantees, involvement of multilateral development banks, and existence of a dedicated PPP unit are important for a project’s success. Privately initiated proposals should be regulated and undergo competitive bidding to reduce the hazard rate of the project and the corresponding burden to the government. Economic growth leads to successful project outcomes. Improved legal and institutional environment can ensure PPP success.
Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
Copyright © by EnPress Publisher. All rights reserved.