Developing Asia’s infrastructure gap results from both inadequate public resources and a lack of effective channels to mobilize private resources toward desired outcomes. The public-private partnership (PPP) mechanism has evolved to fill the infrastructure gap. However, PPP projects are often at risk of becoming distressed, or worst, being terminated because of the long-term nature of contracts and the many different stakeholders involved. This paper applies survival-time hazard analysis to estimate how project-related, macroeconomic, and institutional factors affect the hazard rate of the projects. Empirical results show that government’s provision of guarantees, involvement of multilateral development banks, and existence of a dedicated PPP unit are important for a project’s success. Privately initiated proposals should be regulated and undergo competitive bidding to reduce the hazard rate of the project and the corresponding burden to the government. Economic growth leads to successful project outcomes. Improved legal and institutional environment can ensure PPP success.
The world has complex mega-cities and interdependent infrastructures. This complication in infrastructure relations makes it sensitive to disasters and failures. Cascading failure causes blackouts for the whole system of infrastructures during disasters and the lack of performance of the emergency management stakeholders is clear during a disaster due to the complexity of the system. This research aimed to develop a new concurrent engineering model following the total recovery effort. The objectives of this research were to identify the clustered intervention utilized in the field of resilience and developing a cross-functional intervention network to enhance the resilience of societies during a disaster. Content analysis was employed to classify and categorize the intervention in the main divisions and sub-divisions and the grouping of stakeholders. The transposing system was employed to develop an integrated model. The result of this research showed that the operations division achieved the highest weight of information interchange during the response to improve the resilience of the system. The committee of logistics and the committee of rescue and relief needed the widest bandwidth of information flow in the concurrent engineering (CE) model. The contributed CE model helped the stakeholders provide a resilient response system. The final model and the relative share value of exchanging information for each workgroup can speed up recovery actions. This research found that concurrent engineering (CE) is a viable concept to be implemented as a strategy for emergency management. The result of this research can help policymakers achieve a collaborative teamwork environment and to improve resilience factors during emergency circumstances for critical infrastructures.
This research implements sustainable environmental practices by repurposing post-industrial plastic waste as an alternative material for non-conventional construction systems. Focusing on the development of a recycled polymer matrix, the study produces panels suitable for masonry applications based on tensile and compressive stress performance. The project, conducted in Portoviejo and Medellín, comprises three phases combining bibliographic and experimental research. Low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) were processed under controlled temperatures to form a composite matrix. This material demonstrates versatile applications upon cooling—including planks, blocks, caps, signage, and furniture (e.g., chairs). Key findings indicate optimal performance of the recycled thermoplastic polymer matrix at a 1:1:1 ratio of LDPE, HDPE, and PP, exhibiting 15% deformation. The proposed implementation features 50 × 10 × 7 cm panels designed with tongue-and-groove joints. When assembled into larger plates, these panels function effectively as masonry for housing construction, wall cladding, or lightweight fill material for slab relieving.
The objective of the study was to analyze green marketing in the promotion of environmentally responsible and sustainable practices in the development of resilient infrastructure in Peru. The methodology used was qualitative and interpretative, the documentary design based on the systematic review of scientific literature. The PRISMA model was applied for the selection of units of analysis, resulting in 36 articles out of an initial total of 950. Content analysis was used to examine the documents, following a detailed procedure that included the use of Grounded Theory to categorize and analyze the data. The results highlighted the importance of integrating green marketing and sustainable practices into resilient infrastructure planning and development. Key strategies were identified that include promoting environmental responsibility, adopting sustainable technologies in construction, and implementing policies that foster urban resilience and sustainability. The findings highlight the adoption of a comprehensive approach that combines green marketing with resilient infrastructure planning and development to address environmental challenges and promote sustainable development in Peru.
Copyright © by EnPress Publisher. All rights reserved.