Yam (Dioscorea sp.) is a popular tuber in Cameroon, where it is grown for both food and income. One of the most challenging aspects of the long-term storage of yam tubers is post-harvest spoilage, often caused by fungi. The use of post-harvest chemicals on yam tubers is not a matter of course. The present study evaluated the efficacy of aqueous extract and powder of Zingiber officinale against fungi associated with the storage rot of yam. The fungi were isolated from two yam cultivars, “Calabar” and “Ghana”, from three localities in Cameroon. The antifungal activity of the aqueous extract and ginger powder was studied in vivo on slices of yam tubers. The results obtained showed that eight fungi were associated with yam tubers and exhibited typical rotting symptoms. The most prevalent and virulent fungus was Penicillium sp., which caused decay volumes of 12.76 cm3 and 8.74 cm3 for “Calabar” and “Ghana” cultivars, respectively. Fungal spoilage was greatly reduced by the application of aqueous extract and ginger powder. The aqueous extract tested at the 30% dose was more effective with up to 80% inhibition. However, the ginger powder was more effective against Penicillium sp., Aspergillus niger, and Colletotrichum sp. associated with rot in the variety “Ghana” with total inhibition (100%). Therefore, the aqueous extracts and powder of Zingiber officinale can be used as a bio fungicide to improve the shelf life of yam tubers.
In order to explore the application of the new integrated intelligent spore capture system developed in China in the prediction of cucumber downy mildew and cucumber powdery mildew, the main working parameters of the integrated intelligent spore capture system, such as the presence or absence of air cutting head, the height of air collection port and the time of air collection, were optimized by identifying the morphology of captured spores in the case of natural disease in the field. The relationship between the disease index of cucumber downy mildew and cucumber powdery mildew in greenhouse and the amount of spores captured was analyzed through the dynamic monitoring of disease and spores. The results show that when the air cutting head is not installed, the height of the air collection port is 70 cm, and the period of 10: 00–10: 30 was beneficial to the capture of spores. The disease index of cucumber downy mildew and cucumber powdery mildew had a strong positive correlation with the total amount of spores captured for 7 consecutive days. Continuous monitoring of cucumber downy mildew sporangia and rapid increase in the number is a predictor of the occurrence or rapid increase of cucumber downy mildew. The conidia of cucumber powdery mildew were not detected before the disease onset, and the number of conidia captured was still small at the peak of the disease. The research shows that the integrated intelligent spore capture system is suitable for the prediction of cucumber downy mildew, but there are still some problems in the prediction of cucumber powdery mildew.
Ce4+-doped nanometer ZnO powder was synthesized by so-l gel method. The microstructures and properties of the samples were characterized through XRD, UV-Vis and FTIR. The results indicated that the Ce4+ was successfully incorporated into ZnO, and the diameter of the nanometer was about 10.7nm. It induced the redshifting in the UV-Vis spectra. The photocatalytic activity of the samples was investigated using methylene blue (MB) as the model reaction under irradiation with ultraviolet light. The results showed that the doping of Ce4+ could increase the photocatalytic activities of ZnO nanopowders and that the best molar ratio of Ce4+ was n(Ce)/n(Zn) = 0.05, that the surfactant was sodium dodecyl sulfate, and that the nanometer ZnO was calcinated at 550 ℃ for 3 hours. Meanwhile, it inspected the effect of photocatalytic efficiency through the pH of MB, the amount of catalyst, and illumination time. The experimental results revealed that the initial mass concentration of MB was 10 mg/L, that the pH value was 7-8, that the dosage of Ce4+/ZnO photo-catalyst was 5 g/L, that the UV-irradiation time was 2 h, and that the removal rate of MB reached above 85%. Under the optimized conditions, the degradation rate of real dye wastewater was up to 87.67% and the removal efficiency of COD was 63.5%.
Quartz sand was used as bed material in a small fluidized bed reactor with 1 kg/h feed. Corn straw powder with particle size of 20–40 mesh, 40–60 mesh, 60–80 mesh and 80–120 mesh was used as raw material for rapid pyrolysis at reaction temperatures of 400 °C, 450 °C, 500 °C and 550 °C. The bio-oil obtained after liquefaction of pyrolysis gas was analyzed. The variation trend of bio-oil composition in pyrolysis of corn straw powder with different reaction temperatures and raw material sizes was compared. The results show that: (1) the content of 3-hydroxyl-2-phenyl-2-acrylic acid in bio-oil increases with the decrease of raw material particle size, but it is less at 450 °C; (2) with the increase of reaction temperature, the content of hydroxyacetaldehyde in bio-oil increases at first and then decreases: the content of hydroxyacetaldehyde in bio-oil is the highest at 500 °C when the particle size is 20–40 mesh, and the highest at 450 °C with the other three particle sizes. Compared with other particle sizes, raw material with the particle size of 60–80 mesh is not conducive to the formation of aldehyde compounds; (3) the reaction temperature of 500 °C and the particle size of 60–80 mesh of raw materials are more conducive to the formation of phenolic compounds in bio-oil; (4) the ester compounds with particle size of 20–40 mesh in bio-oil is 20% higher than that of other particle sizes; (5) the reaction temperature and the particle size of raw materials had no significant effect on the formation of ketones, alcohols and alkane compounds in bio-oils.
In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
This study was carried out at the Teaching and Research Farm of Landmark University, Omu-Aran. Treatments consisted of 3 levels of cocoa pod husk ash (0, 2 and 4 tonnes CPHA ha-1), 3 levels of cocoa pod husk powder (0, 2 and 4 tonnes CPHP ha-1), NPK and the control. The experiment was laid out in a Randomized Complete Block Design (RCBD) replicated four times. The following parameters were taken plant height, number of leaves (at 2, 3, and 4 weeks after sowing), total plant weight, root weight, leaf weight, roots girth and roots length. Data collected were subjected to Analysis of Variance (ANOVA) Using S.A.S, 2000. Treatment means were compared using Duncan Multiple Range Test (DMRT) at 0.05 level of probability. Results showed that chemical analysis of cocoa pod ash and powder contained plant nutrients as N, P, K, Ca, Mg and some other micronutrients in varying proportions. Application of CPHA 4 + CPHP 2 gave higher values for all the vegetative parameters. The implication of this study is that high level of cocoa pod husk powder in combination with high level of cocoa pod husk ash is detrimental to radish cultivation. In the same vein, the nutrition of radish was incomplete when NPK fertilizer was applied. It can therefore be recommended that the use of combined application of cocoa pod ash and cocoa pod powder at CPHA4 + CPHP2 was sufficient for the cultivation of radish (Raphanus sativus) in the study area as it compete favorably with application of NPK fertilizer.
Copyright © by EnPress Publisher. All rights reserved.