The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
The cultivation of red chili in East Java, Indonesia, has significant economic and social impacts, necessitating proactive supply chain measures. This research aimed to identify priority risk agents, develop effective risk mitigation, and enhance supply chain resilience using the SCOR model, House of Risk, Interpretative Structural Modelling (ISM), and synthesis analysis. Examining 238 respondents—including farmers, collectors, wholesalers, retailers, home-agroindustries, and experts—the findings highlight farmers’ critical role in supply chain resilience despite risks from crop failures, weather fluctuations, and pest infestations. Simultaneous planting led to market oversupply and price drops, but accurate pricing information facilitated quick market adaptation. Wholesalers influenced pricing dynamics and income levels, impacting farmers directly. To improve resilience, three main strategies were developed through ten key elements: proactive strategies (real-time SCM tracking, Weather Early Warning Systems, risk management team formation, and training), resistance strategies (partnerships, chili stock reserves, storage and drying technologies, GAP implementation, post-harvest management, agricultural insurance, and Fair Profit Sharing Agreements), and recovery and growth strategies (flexible distribution channels and customizable distribution centers). Furthermore, the study delves into the mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also provides stakeholders with evidence to consider new strategies to enhance red chili supply resilience.
The gravure printing process is widely utilized for large-scale, high-quality, multi-colored printing tasks executed at high press speeds. This includes a diverse range of products such as art books, greeting cards, currency, stamps, wallpaper, magazines, and more. This thesis addresses the fire risks associated with gravure printing, acknowledging the use of highly flammable materials and the potential for static charge-related incidents. Despite its prevalence, there is limited research on fire prevention and control in gravure printing. The study employs field observations, stakeholder interviews, and an extensive review of literature on fire risk and control in printing press operations in India. It analyzes the causes of fires using the fire triangle model, emphasizing the role of heat, combustible materials, and oxygen in fire incidents within the printing press environment. The thesis categorizes preventive measures into fire prevention and fire suppression actions, focusing on reducing fire load, static charge mitigation, and implementing firefighting systems. It observes that poor housekeeping, lack of awareness, and inadequate emergency control plans contribute significantly to fire hazards in press facilities. Additionally, the research identifies key factors such as high press temperatures, low humidity, improper storage, and inadequacies in firefighting systems as potential causes of fires. It emphasizes the need for optimal environmental conditions, proper storage practices, and effective firefighting infrastructure within press facilities. The study concludes with comprehensive guidelines for loss prevention and control, including management programs, housekeeping, operator training, pre-emergency planning, preventive maintenance, and plant security. It also addresses safety measures specific to gravure printing presses, such as automatic sprinkler systems, fire hydrant system, carbon dioxide flooding systems, and portable fire extinguishers. In summary, this thesis provides valuable insights into the multifaceted nature of fire risks in gravure printing presses and recommends a holistic approach for effective fire prevention and control.
Project risk management in the mining industry is necessary to identify, analyze and reduce uncertainty. The engineering features of mining enterprises, by their nature, require improved risk management tools. This article proves the relevance of creating a simulation model of the production process to reduce uncertainty when making investment decisions. The purpose of the study is to develop an algorithm for deciding on the economic feasibility of creating a simulation experiment. At the same time, the features and patterns of the cases for which the simulation experiment was carried out were studied. Criteria for feasibility assessment of the model introduction based on a qualitative parameters became the central idea for algorithm. The relevance of the formulated algorithm was verified by creating a simulation model of a potassium salt deposit with subsequent optimization of the production process parameters. According to the results of the experiment, the damage from the occurrence of a risk situations was estimated as a decrease in conveyor productivity by 32.6%. The proposed methods made it possible to minimize this risk of stops in the conveyor network and assess the lack of income due to the risk occurrences.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
Copyright © by EnPress Publisher. All rights reserved.