In the era of digital disruption, the imperative development of broadband services is evident. The emergence of 5G technology represents the latest stride in commercial broadband, offering data speeds poised to drive significant societal advancement. The midst of responding to this transformative phenomenon. This pursuit unveils a landscape replete with opportunities and challenges, particularly regarding how 5G’s potential benefits can drive the government towards equitable distribution, ensuring accessibility for all. Simultaneously, there exists a legal hurdle to ensure this vision’s fruition. From a legal perspective, perceived as infrastructure for transformation, the law must seamlessly adapt to and promptly address technological progress. Utilizing normative juridical methods and analytical techniques via literature review, this research endeavors to outline the advantages of 5G and scrutinize Indonesia’s latest telecommunications regulations and policies, alongside corresponding investments. The study ultimately aims to provide a juridical analysis of 5G implementation within Indonesia’s legal framework.
The integration of chatbots in the financial sector has significantly improved customer service processes, providing efficient solutions for query management and problem resolution. These automated systems have proven to be valuable tools in enhancing operational efficiency and customer satisfaction in financial institutions. This study aims to conduct a systematic literature review on the impact of chatbots in customer service within the financial sector. A review of 61 relevant publications from 2018 to 2024 was conducted. Articles were selected from databases such as Scopus, IEEE Xplore, ARDI, Web of Science, and ProQuest. The findings highlight that efficiency and customer satisfaction are central to the perception of service quality, aligning with the automation of the user experience. The bibliometric analysis reveals a predominance of publications from countries such as India, Germany, and Australia, underscoring the academic and practical relevance of the topic. Additionally, essential thematic terms such as “artificial intelligence” and “advanced automation” were identified, reflecting technological evolution in this field. This study provides significant insights for future theoretical, practical, and managerial developments, offering a framework to optimize chatbot implementation in highly regulated environments.
This study conducts a systematic review to explore the applications of Artificial Intelligence (AI) in mobile learning to support indigenous communities in Malaysia. It also examines the AI techniques used more broadly in education. The main objectives of this research are to investigate the role of Artificial Intelligence (AI) in support the mobile learning and education and provide a taxonomy that shows the stages of process that used in this research and presents the main AI applications that used in mobile learning and education. To identify relevant studies, four reputable databases—ScienceDirect, Web of Science, IEEE Xplore, and Scopus—were systematically searched using predetermined inclusion/exclusion criteria. This screening process resulted in 50 studies which were further classified into groups: AI Technologies (19 studies), Machine Learning (11), Deep Learning (8), Chatbots/ChatGPT/WeChat (4), and Other (8). The results were analyzed taxonomically to provide a structured framework for understanding the diverse applications of AI in mobile learning and education. This review summarizes current research and organizes it into a taxonomy that reveals trends and techniques in using AI to support mobile learning, particularly for indigenous groups in Malaysia.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
The number of accidents at level railway crossings, especially crossings without gate barriers/attendants, is still very high due to technical problems, driving culture, and human error. The aim of this research is to provide road maps application based on ergonomic visual displays design that can increase awareness level for drivers before crossing railway crossings. The double awareness driving (DAD) map information system was built based on the waterfall method, which has 4 steps: defining requirements, system and software design, unit testing, and implementation. User needs to include origin-destination location, geolocation, distance & travel time, directions, crossing information, and crossing notifications. The DAD map application was tested using a usability test to determine the ease of using the application used the System Usability Scale (SUS) questionnaire and an Electroencephalogram (EEG) test to determine the increase in concentration in drivers before and immediately crossing a railway crossing. Periodically, the application provides information on the driving zone being passed; green zone for driving distances > 500 m to the crossing, the yellow zone for distances 500m to 100m, and the red zone for distances < 100 m. The DAD map also provides information on the position and speed of the nearest train that will cross the railway crossing. The usability test for 10 respondents giving SUS score = 97.5 (satisfaction category) with a time-based efficiency value = 0.29 goals/s, error rate = 0%, and a success rate of 93.33%. The cognitive ergonomic testing via Electroencephalogram (EEG) produced a focus level of 21.66%. Based on the results of DAD map testing can be implemented to improve the safety of level railroad crossings in an effort to reduce the number of driving accidents.
Finding the right technique to optimize a complex problem is not an easy task. There are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard problems. Most metaheuristic research is characterized by developing a new algorithm for a task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics can adequately solve them. The purpose of this paper is to promote more frequent reuse of algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed and categorized in a new way in terms of variables or based on the type of task. A lot of emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are also analyzed from a new approach: the focus of the study is that, based on literature, an algorithm has already effectively solved mostly discrete or continuous problems. An algorithm is not modified and adapted to a problem, but methods that provide a possible good solution for a task type are collected. A kind of reverse optimization is presented, which can help the reuse and industrial application of metaheuristics. The paper also contributes to providing proof of the difficulties in the applicability of metaheuristics. The revealed research difficulties can help improve the quality of the field and, by initiating many additional research questions, it can improve the real application of metaheuristic algorithms to specific problems. The paper helps with decision support in logistics in the selection of applied optimization methods. We tested the effectiveness of the selection method on a specific task, and it was proven that the functional structure can help the decision when choosing the appropriate algorithm.
Copyright © by EnPress Publisher. All rights reserved.