Localization is globally accepted as the strategy towards attaining the Sustainable Development Goals (SDGs). In this article, we put forth the South Indian state of Kerala as a true executor of the localization of SDGs owing to her foundational framework of decentralized governance. We attempt to understand how the course of decentralization acts as a development trajectory and how it has paved the way for the effective assimilation of localization principles post-2015 by reviewing the state documents based on the framework propounded by the United Nations. We theorize that the well-established decentralization mechanism, with delegated institutions and functions thereof, encompasses overlapping mandates with the SDGs. Further, through the tools of development plan formulation, good governance, and community participation at decentralized levels, Kerala could easily adapt to localization, concocting output through innovative measures of convergence, monitoring, and incentivization carried out through the pre-existing platforms and processes. The article proves that constant and concerted efforts undertaken by Kerala through her meticulous and action-oriented decentralized system aided the localization of SDGs and provides an answer to the remarkable feat that the state has achieved through the consecutive four times achievements in the state scores of SDG India Index.
This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
This study provides an evaluation of the environmental impact and economic benefits associated with the disposal of mango waste in Thailand, utilizing the methodologies of life cycle assessment (LCA) and cost-benefit analysis (CBA) in accordance with internationally recognized standards such as ISO 14046 and ISO 14067. The study aimed to assess the environmental impact of mango production in Thailand, with a specific focus on its contribution to global warming. This was achieved through the application of a life cycle assessment methodology, which enabled the determination of the cradle-to-grave environmental impact, including the estimation of the mango production’s global warming potential (GWP). Based on the findings of the feasibility analysis, mango production is identified as a novel opportunity for mango farmers and environmentally conscious consumers. This is due to the fact that the production of mangoes of the highest quality is associated with a carbon footprint and other environmental considerations. Based on the life cycle assessment conducted on conventional mangoes, taking into account greenhouse gas (GHG) emissions, it has been determined that the disposal of 1 kg of mango waste per 1 rai through landfilling results in an annual emission of 8.669 tons of carbon. This conclusion is based on comprehensive data collected throughout the entire life cycle of the mangoes. Based on the available data, it can be observed that the quantity of gas released through the landfilling process of mango waste exhibits an annual increase in the absence of any intervening measures. The cost benefit analysis conducted on the life cycle assessment (LCA) of traditional mango waste has demonstrated that the potential benefits derived from its utilization are numerous. The utilization of the life cycle assessment (LCA) methodology and the adoption of a sustainable business model exemplify the potential for developing novel eco-sustainable products derived from mango waste in forthcoming time.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
In the present and future of education, fostering complex thinking, especially in the context of the Sustainable Development Goals (SDGs), is critical to lifelong learning. This study aimed to analyze learning scenarios within the framework of a model that promotes complex thinking and integrated design analysis, to identify the contributions of linking design models to the SDGs. The research question was: How does the open educational model of complex thinking link to the SDGs and scenario design? The analysis examined a pedagogical approach that introduced 33 participants to the instructional design of real-life or simulated situations to develop complex thinking skills. The categories of analysis were the model components, the SDGs, and scenario designs. The findings considered (a) innovative design capacity linked to SDG challenges, (b) linking theory and practice to foster complex thinking, and (c) the critical supporting tools for scenario design. The study intends to be of value to academic, social, and business communities interested in mobilizing complex thinking to support lifelong learning.
Copyright © by EnPress Publisher. All rights reserved.