In the era of digital disruption, the imperative development of broadband services is evident. The emergence of 5G technology represents the latest stride in commercial broadband, offering data speeds poised to drive significant societal advancement. The midst of responding to this transformative phenomenon. This pursuit unveils a landscape replete with opportunities and challenges, particularly regarding how 5G’s potential benefits can drive the government towards equitable distribution, ensuring accessibility for all. Simultaneously, there exists a legal hurdle to ensure this vision’s fruition. From a legal perspective, perceived as infrastructure for transformation, the law must seamlessly adapt to and promptly address technological progress. Utilizing normative juridical methods and analytical techniques via literature review, this research endeavors to outline the advantages of 5G and scrutinize Indonesia’s latest telecommunications regulations and policies, alongside corresponding investments. The study ultimately aims to provide a juridical analysis of 5G implementation within Indonesia’s legal framework.
The fifth-generation technology standard (5G) is the cellular technology standard of this decade and its adoption leaves room for research and disclosure of new insights. 5G demands specific skillsets for the workforce to cope with its unprecedented use cases. The rapid progress of technology in various industries necessitates a constant effort from workers to acquire the latest skills demanded by the tech sector. The successful implementation of 5G hinges on the presence of competent individuals who can propel its progress. Most of the existing works related to 5G explore this technology from a multitude of applied and industrial viewpoints, but very few of them take a rigorous look at the 5G competencies associated with talent development. A competency model will help shape the required educational and training activities for preparing the 5G workforce, thereby improving workforce planning and performance in industrial settings. This study has opted to utilize the Fuzzy Delphi Method (FDM) to investigate and evaluate the perspectives of a group of experts, with the aim of proposing a 5G competency model. Based on the findings of this study, a model consisting of 46 elements under three categories is presented for utilization by any contingent of 5G. This competency model identifies, assesses, and introduces the necessary competencies, knowledge, and attributes for effective performance in a 5G-related job role in an industrial environment, guiding hiring, training, and development. Companies and academic institutions may utilize the suggested competency model in the real world to create job descriptions for 5G positions and to develop curriculum based on competencies. Such a model can be extended beyond the scope of 5G and lay the foundation of future wireless cellular network competency models, such as 6G competency models, by being refined and revised.
The development of artificial intelligence (AI) and 5G network technology has changed the production and lifestyle of people. AI also has promoted the transformation of talent training mode under the integration of college industry and education. In the context of the current transformation of education, AI and 5G networks are increasingly used in the education industry. This paper optimizes and upgrades the training mode of skilled talents in higher vocational colleges by using its advanced methods and technologies of information display. This means is helpful to analyze and solve a series of objective problems such as the single training form of the current talent training mode. This paper utilizes the principles and laws of industry university research (IUR) collaboration for reference to construct and optimize the talent training mode based on the analysis of the requirements of talent training and the role of each subject in talent training. Then, the ecological talent training environment can be realized. In the analysis of talent training mode under the cooperation of production and education, the correlation coefficients of network construction, environment construction, scientific research funds, scientific research level, and policy support were 0.618, 0.576, 0.493, 0.785, and 0.451, respectively. This showed that the scientific research level had the greatest impact on talent training in the talent training mode of IUR collaboration, while policy support had less impact on talent training compared with other factors. The combination of AI and 5G network technology with the talent training mode of IUR cooperation can effectively analyze the influencing factors and problems of the talent training mode. The hybrid method is of great significance to the talent training strategy and fitting degree.
5G technology is transforming healthcare by enhancing precision, efficiency, and connectivity in diagnostics, treatments, and remote monitoring. Its integration with AI and IoT is set to revolutionize healthcare standards. This study aims to establish the state of the art in research on 5G technology and its impact on healthcare innovation. A systematic review of 79 papers from digital libraries such as IEEE Xplore, Scopus, Springer, ScienceDirect, and ResearchGate was conducted, covering publications from 2018 to 2024. Among the reviewed papers, China and India emerge as leaders in 5G health-related publications. Scopus, Springer Link, and IEEE Xplore house the majority of first-quartile (Q1) papers, whereas Science Direct and other sources show a higher proportion in the second quartile (Q2) and lower rankings. The predominance of Q1 papers in Scopus, Springer Link, and IEEE Xplore underscores these platforms’ influence and recognition, reflecting significant advancements in both practice and theory, and highlighting the expanding application of 5G technology in healthcare.
Copyright © by EnPress Publisher. All rights reserved.