Introduction: Stenoses in the path of arteriovenous fistulas (AVF) for hemodialysis are a very prevalent problem and there is long experience in their treatment by percutaneous angioplasty (PTA). These procedures, however, involve non-negligible equipment requirements, exposure to radiation and intravenous contrast that are not beneficial for the patient and make their performance more complex. This study reviews our initial experience with Doppler ultrasound-guided angioplasty. Methods: Prospective cohort of patients with native AVF dysfunction due to significant venous stenosis treated by Doppler echo-guided PTA. AVF puncture, lesion catheterization, balloon localization and inflation, and outcome verification were performed under ultrasound guidance. Only one fistulography was performed before and another one after dilatation. As a control, the cases performed during the same period by the usual angiographic method were also collected. Results: Between February 2015 and September 2018, 51 PTAs were performed on native AVF, of which 27 were echogenic (mean age, 65.3 years; 63% male). The technical success rate was 96%. In 26% of cases, PTA was repeated due to residual stenosis after angiographic imaging. There were 7.3% periprocedural complications. 92% of the AVFs were punctured at 24 hours. Primary patency at 1 month, 6 months and 1 year was 100%, 64.8% and 43.6%, and assisted patency was 100%, 87.2% and 74.8%. There were no significant differences in immediate or late results with respect to angiographically guided AVF angioplasty. Conclusions: AVF-PTA can be performed safely and effectively guided by Doppler ultrasound, which simplifies the logistics required for its performance, although we still need to improve the capacity for early verification of the result with this imaging technique.
With the increasing demand for sustainable energy, advanced characterization methods are becoming more and more important in the field of energy materials research. With the help of X-ray imaging technology, we can obtain the morphology, structure and stress change information of energy materials in real time from two-dimensional and three-dimensional perspectives. In addition, with the help of high penetration X-ray and high brightness synchrotron radiation source, in-situ experiments are designed to obtain the qualitative and quantitative change information of samples during the charge and discharge process. In this paper, X-ray imaging technology based on synchrotron and its related applications are reviewed. The applications of several main X-ray imaging technologies in the field of energy materials, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, X-ray fluorescence microscopy and coherent diffraction imaging, are discussed. The application prospects and development directions of X-ray imaging in the future are prospected.
The development of flexible, wearable electronic devices is one of the future directions of technology development. Flexible conductive materials are important supporting materials for wearable electronic devices. Polymer has excellent flexibility; it is an important way to prepare flexible conductors from polymer-based conductive composites. In this paper, the research progress of polymer-based flexible conductive composites is summarized in terms of preparation and characterization methods. The key factors to realize flexible conductors are put forward, namely, the maintenance of excellent polymer elasticity and the realization of stability. The design and preparation of the extensible conductor with high-elasticity matrix and nanofiller are introduced in detail, and the problems in the current research are summarized.
Fe3+-doped nano-TiO2 powders were prepared by sol-gel method. The photocatalytic activity of Fe3+-doped TiO2 nanoparticles was studied by using UV lamp as light source and methylene blue as degradation target. The photocatalytic activity of Fe3+-doped TiO2 was studied by degradation of 4L methylene blue solution with initial concentration of 10mg · L - 1. The results show that the photocatalytic activity of TiO2 can be improved by the addition of Fe3+. When the molar ratio of Fe3+ is 0.5-1%, the calcination temperature is 500 ℃. The photocatalytic degradation of methylene blue is the best.
Lead sulfide (PbS) is an important IV-VI semiconductor material with narrow bandwidth and wide wave width, which attracts people's attention. Nano-level PbS has many novel optoelectronic properties and has a wide range of applications in the field of optoelectronics, such as infrared optoelectronic devices, photovoltaic devices, light-emitting devices and display devices. In this paper, Pbs is produced by solvent thermal method by using lead acetate as lead source, sulfur power as sulfur source, ethylene glycol as solvent, and acetic acid to provide acidic environment. The reaction acidity, type of lead source, amount of sulfur source and other aspects will be explored. The products obtained under different conditions were characterized by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM). The results showed that PbS produced at 140°C for 24 hours, using 14mL ethylene glycol and 1.2mL acetic acid has the best morphology. It has a non-planar six-arm symmetrical structure. Finally, we prepare the lead sulfide composite Ni/PbS, and characterized it.
Nanotransformations of a blanket at the fair dimensional combined processing with imposing of electric field the tool in the form of untied metal granules are considered. An object of researches are the figurine details applied in aviation, the missile and space equipment and in the oil and gas industry: driving wheels and a flowing part of cases of turbo-pump units, screws, krylchatka where there are sites of variable curvature with limited access of the tool in a processing zone.It is shown that the combination in the combined process of two-component technological environments of current carrying granules and the electroconductive liquid environment given with a high speed to a processing zone allows to receive the required quality of a blanket; action of electric field from a source with the increased tension allows to create at fair dimensional processingthe required peening from blows of firm granules. It gives the chance to raise a resource and durability of responsible knots of the aerospace equipment and oil and gas equipment, to expand the field of use of the combined processing with untied granules on a detailwith the sitesnot available to processing by a profile electrode.
Copyright © by EnPress Publisher. All rights reserved.