In this paper, spherical gold nanoparticles (AuNPs), rod-shape AuNPs and triangular AuNPs were synthesized using CTAB as the coating reagent, and their bactericidal properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were studied. By the plate count method and turbidity method, the minimum bactericidal concentrations (MBC) and the minimum bacteriostasis concentrations (MIC) to the two kinds of bacteria were determined. The MIC of rod-shape AuNPs, triangular AuNPs and spherical AuNPs to E. coli were 0.65 μg/mL, 3.71 μg/mL, 21.21 μg/mL, and MBC were 1.30 μg/mL, 11.09 μg/mL, 21.21 μg/mL, respectively. The MIC to S. aureus were 0.26 μg/mL, 0.56 μg/mL, 2.65 μg/mL, while MBC were 0.52 μg/mL, 1.11 μg/mL, 2.65 μg/mL, respectively. The results showed that the bactericidal effect of rod-shape AuNPs on E. coli and S. aureus was higher than that of the other two forms, and the bactericidal effect of three different forms of AuNPs on S. aureus was better than that on E. coli.
The ways of developing functional textiles based on nanomaterials were introduced, and the latest research achievements of nanomaterials in such aspects as flame retardancy, antibacterial, super-hydrophobic, self-cleaning, UV resistance, and anti-static textiles were reviewed. The main technical obstacles to the large-scale application of nanomaterials in functional textiles were pointed out, the possible solutions were discussed, and the development of functional textiles by nanomaterials has been prospected.
This study focused on the formulation and characterization of silver nanoparticles (AgNP) functionalized with d-limonene. The nanoparticles were functionalized by phase inversion and the synthesis of the nanoparticles was performed in situ; particle size was determined by laser diffraction, zeta potential and optical colloidal stability using Multiscan 20 for a period of 24 hours at 37 °C; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the formulated material on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE, carbapenem-resistant Pseudomona aeruginosa were determined. The nanoparticles showed colloidal stability at a d-limonene concentration of 3.93%, silver ions at 1.61 × 10−3%, non-ionic adjuvant at 24% and ascorbic acid at 5.88%; citric acid/citrate (1:1) 0.48M for a pH of 4.5 was used as a buffer system. The formulation was classified as a polydisperse system (PD = 0.0851), with a zeta potential of −11.6 mV and average particle size of 81.5 ± 0.9 nm. A particle migration velocity of −0.199 ± 0.006 mm∙h−1, a constant transmission profile and backscattering profile with variations of 10% were evidenced, which represents a stable formulation. The nanoparticles presented an MIC and an MBC of 28 μg∙mL−1 (5.6 × 10−2% d-limonene and 4.7 × 10−5% AgNP) against all tested bacteria.
In recent years, using novel nanomaterials to improve the antifouling and antibacterial performance of reverse osmosis membranes has received much attention. In this study, hydrophilic Ag@ZnO-hyperbranched polyglycerols nanoparticles were fabricated by ring-opening multibranched polymerization of glycidyl acid with the core-shell Ag@ZnO nanoparticles. The cellulose triacetate composite membranes were prepared by grafting Ag@ZnO-HPGs nanoparticles on the surface of cellulose triacetate membranes. The surface of the nanoparticles with active functional group –OH was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Surface morphology, charge, and hydrophilicity of the composite membranes were characterized by scanning electron microscope, zeta potential, and contact angle analysis. The results showed that grafting the Ag@ZnO-HPGs nanoparticles onto the cellulose triacetate membrane surface improved the physical and chemical properties of the cellulose triacetate composite membranes. The water flux of cellulose triacetate composite membranes increased while the salt rejection rate to NaCl slightly decreased. Meanwhile, the cellulose triacetate composite membranes showed excellent antifouling properties of having a high flux recovery. The antibacterial performance of the cellulose triacetate composite membrane against E. coli and S. aureus was prominent that the antibacterial rates were 99.50% and 92.38%, and bacterial adhesion rates were as low as 19.12% and 21.35%, respectively.
Alginate-silver nanocomposites in the form of spherical beads and films were prepared using a green approach by using the aqueous extract of Ajwa date seeds. The nanocomposites were fabricated by in situ reduction and gelation by ionotropic crosslinking using calcium ions in solution. The rich phytochemicals of the date seed extract played a dual role as a reducing and stabilizing agent in the synthesis of silver nanoparticles. The formation of silver nanoparticles was studied using UV-Vis absorption spectroscopy, and a distinct surface plasmon resonance peak at 421 nm characteristic of silver nanoparticles confirmed the green synthesis of silver nanoparticles. The morphology of the nanocomposite beads and film was compact, with an even distribution of silver nanoclusters. The catalytic property of the nanocomposite beads was evaluated for the degradation of 2-nitrophenol in the presence of sodium borohydride. The degradation followed pseudo-first-order kinetics with a rate constant of 1.40 × 10−3 s−1 at 23 ℃ and an activation energy of 18.45 kJ mol−1. The thermodynamic parameters, such as changes in enthalpy and entropy, were evaluated to be 15.22 kJ mol−1 and −197.50 J mol−1 K−1, respectively. The nanocomposite exhibited properties against three clinically important pathogens (gram-positive and gram-negative bacteria).
Gold nanoparticles (AuNPs) have been known to possess exceptional electric, biochemical, and optical characteristics and are ‘the topic of discussion’ these days, especially relating to the field of biomedicine. Several plants, bacteria, and fungi have been utilized for the generation of AuNPs, besides other physical and chemical methods. While some studies have been reported with gold nanoparticles, less are aimed at fungi and its optimization factors. These parameters can allow us to design AuNPs of our choice depending on the use. The present review focuses on and inspects AuNPs with green synthesis through fungus optimization parameters followed by applications, aiming specifically at their antibacterial activity. Their antibacterial characteristics can open new doors for the pharmaceutical industry in the future.
Copyright © by EnPress Publisher. All rights reserved.