Academic integrity has been at the centre of the discussion of the adoption of Chat GPT by academics in their research. This study explored how academic integrity mitigates the desire to use ChatGPT in academic tasks by EFL Pre-service teachers, in consideration of the time factor, perceived peer influence, academic self-effectiveness, and self-esteem. The study utilized web-based questionnaires to elicit data from 300 EFL Pre-service teachers across educational fields drawn from different schools across the world. Analysis was conducted using relevant statistical measures to test the projected four hypotheses. The findings provide evidence in support of Hypothesis 1, with a statistically significant path coefficient (β) of 0.442, a t-value of 3.728, and a p-value of 0.000. The hypothesis acceptance implies that when academic integrity improves, the impact of the time-saving aspect of the use of ChatGPT Across educational fields study decreases. This suggests that EFL Pre-service teachers who have a firm dedication to academic honesty are less influenced by the tempting appeal of ChatGPT’s time-saving features, highlighting the ethical factors that influence their decision-making. The data also provide support for Hypothesis 2, indicating a substantial inverse relationship with a path coefficient (β) of 0.369, a t-value of 5.629, and a p-value of 0.001. These findings indicate that stronger adherence to academic integrity is linked to a diminished effect of colleagues on the choice to use ChatGPT in Academic tasks. The results suggest that a firm dedication to academic honesty serves as a protective barrier against exogenous pressures or influences from colleagues when it comes to embracing cutting-edge technology. However, in general, these findings revealed there was a negative association between academically related factors (e.g., time factor, sense of peer pressure, language study self-confidence, and academic language competence), as well as an attitude toward adoption of ChatGPT and commitment towards academic integrity.
The incorporation of artificial intelligence (AI) into language education has created new opportunities for improving the instruction and acquisition of Chinese characters. Nevertheless, the cognitive difficulties linked to the acquisition of Chinese characters, such as their intricate visual features and lack of clear meaning, necessitate thoughtful deliberation when developing AI-supported learning interventions. The objective of this project is to explore the capacity of a collaborative method between humans and machines in teaching Chinese characters, utilising the advantages of both human expertise and AI technology. We specifically investigate the utilisation of ChatGPT, a substantial language model, for the creation of instructional materials and evaluation methods aimed at teaching Chinese characters to individuals who are not native speakers. The study utilises a mixed-methods approach, which involves both qualitative examination of lesson plans created by ChatGPT and quantitative evaluation of student learning outcomes. The results indicate that the suggested framework for human-machine collaboration can successfully tackle the cognitive difficulties associated with learning Chinese characters, resulting in enhanced learner involvement and performance. Nevertheless, the research also emphasises the constraints of AI-generated material and the significance of human involvement in guaranteeing the accuracy and dependability of educational interventions. This research adds to the expanding collection of literature on AI-assisted language learning and offers practical insights for educators and instructional designers who aim to use AI tools into Chinese language curriculum. The results emphasise the necessity of employing a multi-disciplinary strategy in AI-supported language learning, incorporating knowledge from cognitive psychology, educational technology, and second language acquisition.
This study aims to examine the pathways through which the user experience (UX) of ChatGPT, a representative of generative artificial intelligence, affects user loyalty. Additionally, it seeks to verify whether ChatGPT’s UX varies according to a user’s need for cognition (NFC). This research proposed and examined how ChatGPT’ UX affect user engagement and loyalty and used mediation analysis using PROCESS Macro Model 6 to test the impact of UX on web-based ChatGPT loyalty. Data were collected by an online marketing research company. 200 respondents were selected from a panel of individuals who had used ChatGPT within the previous month. Prior to the survey, the study objective was explained to the respondents, who were instructed to answer questions based on their experiences with ChatGPT during the previous month. The usefulness of ChatGPT was found to have a significant impact on interactivity, engagement, and intention to reuse. Second, it was revealed that evaluations of ChatGPT may vary according to users’ cognitive needs. Users with a high NFC, who seek to solve complex problems and pursue new experiences, perceived ChatGPT’s usefulness, interactivity, engagement, and reuse intentions more positively than those with a lower NFC. These results have several academic implications. First, this study validated the role of the UX in ChatGPT. Second, it validated the role of users’ need for cognition levels in their experience with ChatGPT.
With society’s continuous development and progress, artificial intelligence (AI) technology is increasingly utilized in higher education, garnering increased attention. The current application of AI in higher education impacts teachers’ instructional methods and students’ learning processes. While acknowledging that AI advancements offers numerous advantages and contribute significantly to societal progress, excessive reliance on AI within education may give rise to various issues, students’ over-dependence on AI can have particularly severe consequences. Although many scholars have recently conducted research on artificial intelligence, there is insufficient analysis of the positive and negative effects on higher education. In this paper, researchers examine the existing literature on AI’s impact on higher education to explore the opportunities and challenges presented by this super technology for teaching and learning in higher educational institutions. To address our research questions, we conducted literature searches using two major databases—Scopus and Web of Science—and we selected articles using the PRISMA method. Findings indicate that AI plays a significant role in enhancing student efficiency in academic tasks and homework; However, when considering this issue from an ethical standpoint, it becomes apparent that excessive use of AI hinders the development of learners’ knowledge systems while also impairing their cognitive abilities due to an over-reliance on artificial technology. Therefore, our research provides essential guidance for stakeholders on the wise use of artificial intelligence technology.
In today’s fast-paced digital world, generative AI, especially OpenAI’s ChatGPT, has become a game-changing technology with significant effects on education. This study examines public sentiment and discourse surrounding ChatGPT’s role in higher education, as reflected on social media platform X (formerly Twitter). Employing a mixed-methods approach, we conducted a thematic analysis using Leximancer and Voyant Tools and sentiment analysis with SentiStrength on a dataset of 18,763 tweets, subsequently narrowed to 5655 through cleaning and preprocessing. Our findings identified five primary themes: Authenticity, Integrity, Creativity, Productivity, and Research. The sentiment analysis revealed that 46.6% of the tweets expressed positive sentiment, 38.5% were neutral, and 14.8% were negative. The results highlight a general openness to integrating AI in educational contexts, tempered by concerns about academic integrity and ethical considerations. This study underscores the need for ongoing dialogue and ethical frameworks to responsibly navigate AI’s incorporation into education. The insights gained provide a foundation for future research and policy-making, aiming to enhance learning outcomes while safeguarding academic values. Limitations include the focus on English-language tweets, suggesting future research should encompass a broader linguistic and platform scope to capture diverse global perspectives.
Copyright © by EnPress Publisher. All rights reserved.