The purpose of Vehicular Ad Hoc Network (VANET) is to provide users with better information services through effective communication. For this purpose, IEEE 802.11p proposes a protocol standard based on enhanced distributed channel access (EDCA) contention. In this standard, the backoff algorithm randomly adopts a lower bound of the contention window (CW) that is always fixed at zero. The problem that arises is that in severe network congestion, the backoff process will choose a smaller value to start backoff, thereby increasing conflicts and congestion. The objective of this paper is to solve this unbalanced backoff interval problem in saturation vehicles and this paper proposes a method that is a deep neural network Q-learning-based channel access algorithm (DQL-CSCA), which adjusts backoff with a deep neural network Q-learning algorithm according to vehicle density. Network simulation is conducted using NS3, the proposed algorithm is compared with the CSCA algorithm. The find is that DQL-CSCA can better reduce EDCA collisions.
Copyright © by EnPress Publisher. All rights reserved.