With the improvement of people's living standards, water heaters almost into the various households. In the energy-saving emission reduction has become the trend of the times today, saving energy and reducing carbon emissions is the most fashionable way of life. Air source heat pump water heaters are increasingly being used in people's lives. It is well known that it has many advantages, safety, energy saving, comfort, environmental protection, but there are some factors that affect its development and promotion. This paper mainly discusses the development history of air source heat pump technology at home and abroad, working principle, working flow, turbo technology at present stage, efficient heat exchange, and the research status of air source heat pump technology, such as new type refrigerant and dual frequency compression frequency conversion, then it discusses the application of air source heat pump technology, has the advantage, and finally discusses its application and the existence of two major problems and suggestions for improvement.
The study of the performance of high-efficiency heat pump systems has been a hot issue of general interest in the field of heat pump air conditioning. For the designed and developed two-stage casing tandem heat exchanger of heat pump system, the 3D finite volume method and the realizable k-ε model are used to numerically analyze the influence law of inlet fluid temperature and flow velocity on the overall heat transfer coefficient as well as the Nussle number of inner and outer tubes. The results show that decreasing the inlet water temperature or increasing the inlet refrigerant temperature can improve the overall heat transfer performance; Nuin increases with the increase of water and refrigerant flow rates, while Nuout increases with the increase of water flow rate but decreases with the increase of refrigerant flow rate; Nuin and Nuout both increase with the decrease of water temperature or refrigerant temperature increases.
In order to study the temperature change trend of the surrounding geotechnical soil during the operation and thermal recovery of the medium-deep geothermal buried pipe and the influence of the geotechnical soil on the operational stability of the vertical buried pipe after thermal recovery. Based on the data of geological stratum in Guanzhong area and the actual engineering application of medium-deep geothermal buried pipe heating system in Xi’an New Area, the influence law of medium-deep geothermal buried pipe heat exchanger on surrounding geotechnical soil is simulated and analyzed by FLUENT software. The results show that: after four months of heating operation, in the upper layer of the geotechnical soil, the reverse heat exchange zone appears due to the higher fluid temperature; in the lower layer of the geotechnical soil, the temperature decreases more with the increase of depth and shows a linear increase in the depth direction; without considering the groundwater seepage, after eight months of thermal recovery of the geotechnical soil after heating, the maximum temperature difference after recovery is 3.02 ℃, and the average temperature difference after recovery is 1.30 ℃ The maximum temperature difference after recovery was 3.02 ℃ and the average temperature difference after recovery was 1.30 ℃. The geotechnical thermal recovery temperature difference has no significant effect on the long-term operation of the buried pipe, and it can be operated continuously and stably for a long time. Practice shows that due to the influence of various factors such as stratigraphic structure, stratigraphic pressure, radioactive decay and stratigraphic thermal conductivity, the actual stratigraphic temperature below 2000m recovers rapidly without significant temperature decay, fully reflecting the characteristics of the Earth’s constant temperature body.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
Copyright © by EnPress Publisher. All rights reserved.