The content of flavonoids in mesophyll cells of wheat was studied under the condition of enhanced UV-B radiation intensity. In this experiment, four groups of six days of control were treated with He-Ne laser group (L), enhanced UV-B radiation group (B), He-Ne laser and UV-B combined treatment group (B + L ), Normal light group (CK). Since the flavonoids carry some unsubstituted hydroxyl or glycosyl groups, it is a polar compound. By the 'similar compatibility' principle, they have some level of solubility in polar solvents, such as methanol, ethanol, n-butanol, propanol, and water. In this experiment, 70% ethanol was used to extract flavonoids. Finally, the total content of flavonoids in mesophyll cells was determined by visible spectrophotometry. The OD value of flavonoids was determined by rutin reagent 'The standard curves because rutin is a representative of flavonoids, it scavenging the role of free radicals significantly. The results showed that when the UV-B UV radiation intensity was enhanced, the content of flavonoids in wheat mesophyll cells increased, that is, the content of flavonoids in wheat leaves was higher than that in UV-B Strength was positively correlated. The results showed that the content of flavonoids in the mesophyll cells of the four control groups was the same as that of the B group> BL group> CK group> L group. With the prolonging of the treatment time of wheat, the content of flavonoids in wheat leaves at jointing-booting stage was significantly higher than that in seedling stage and panicle stage. This means that flavonoids are a protective substance that absorbs UV-B in plants, that is, the absorption of UV-B by flavonoids reduces the damage of UV-B to organs in plants [8] [10]; UV-B The smaller the damage, the less the content of flavonoids; laser damage caused by UV-B have a certain role in the repair. In this study, we further studied the effect of enhanced UV-B radiation on the content of flavonoids in mesophyll cells of wheat. The effects of UV-B radiation on the content of flavonoids in wheat were studied. Whether it has a very important significance for wheat has become a stress [5].
This review provided a detailed overview of the different synthesis and characterization methods of polymeric nanoparticles. Nanoparticles are defined as solid and colloidal particles of macromolecular substances ranging in size under 100 nm. Different types of nanoparticles are used in many biological fields (bio-sensing, biological separation, molecular imaging, anticancer therapy, etc.). The new features and functions provided by nano dimensions are largely different from their bulk forms. High volume/surface ratio, improved resolution and multifunctional capability make these materials gain many new features.
Adsorption is a widely used method for the treatment of dissolved contaminants. Various agro-industrial wastes have been explored as potential adsorbents, showing high efficiency in dye removal. Each adsorbate-adsorbent pair needs kinetic, and equilibrium models to scale up this process. In this work, the equilibrium, kinetics and thermodynamics of the corn Tuza-Red 40 system were evaluated under batch system at ph = 2.0 at temperatures of 25, 40, and 55 °C. The Langmuir, Freundlich and Temkin models were selected for the isotherm representation, while the Lagergren, Ho, and Elovich equations for the kinetics of the process. The Freundlich model presented the best fit to the isotherms, the adsorption kinetics was best described by the Ho equation, and the values for Gibbs free energy and entropy indicated the spontaneity and feasibility of the process.
The xanthorrhiza species of the genus Arracacia belongs to the Apiaceae family and is known for its ability to generate tuberous reservoir roots that are harvested annually and marketed fresh in South American countries such as Colombia, Brazil, Venezuela, Peru, Bolivia and Ecuador. In Colombia, arracacha is planted mainly in 15 departments and the regional cultivars are differentiated by the color of the leaves, petiole and tuberous root, the best known being amarilla común or paliverde, yema de huevo, and cartagenera. There are studies that have characterized regional materials by applying a limited number of descriptors, but they do not allow knowing the morphology and phenotypic differentiation of each one; therefore, their definition and characterization constitute a support in breeding programs that allow the efficient use of the genetic potential and increase the knowledge about the diversity of cultivars. Phenotypic characterization and description of three cultivars was performed during two production cycles (2016 and 2018) in two phases (vegetative and productive) applying 74 morphological variables (42 qualitative and 32 quantitative) organized in seven groups of variables: plant, leaf, leaflet, petiole, propagule, stock and tuberous root. A factorial analysis for mixed data (FAMD) was performed, which incorporated a multivariate analysis with all variables and identified 11 discriminant variables, 8 qualitative and 3 quantitative, which can be used in processes of characterization of arracacha materials. A morphological description of each cultivar was made, which means that this is the first complete characterization study of regional arracacha materials in Colombia.
The danger of riverbed processes is considered. Their speed varies from the first few months of the flood to the most dynamic process in nature. It happened in front of people. This may make life on the river bank and the utilization of river resources more difficult. This paper introduces the causes and consequences of the danger performance of riverbed processes, and focuses on the mapping methods of the danger assessment of riverbed processes: determining the danger degree of riverbed processes and different methods of displaying it on the map. An example of displaying danger on the previously drawn map is given, and the distribution of different types and expression degrees of dangerous riverbed processes under various natural conditions in Russia is briefly analyzed.
In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping approach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories.
Copyright © by EnPress Publisher. All rights reserved.