The main reason for the formation of nano-biotechnology is due to the penetration of nanotechnology in the biological field, nanotechnology research center is the study of nano-drug carrier. Nano-drug system targeted drug delivery to achieve drug release, increase the insoluble drugs and peptide drug bio-efficiency, reduce the toxicity and application of drugs and other aspects of the development of good prospects, and thus become one of the key research in recent years’ field. Synthesis and application of nanometer drug carriers this review is presented in recent years and its application to provide a comprehensive basis for the treatment process. Describes the nature and preparation of nano-drug carrier methods, in recent years, people have been widely concerned by scholars. Compared with the nano-drug delivery, the general pharmaceutical cannot have to extend the role of drugs, strong efficacy, and the advantages of small drug response. Nano-materials, the specific surface area, surface activity, high catalytic efficiency, surface active center, adsorption capacity and other characteristics, which has many excellent features and new features.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
Abrupt changes in environmental temperature, wind and humidity can lead to great threats to human life safety. The Gansu marathon disaster of China highlights the importance of early warning of hypothermia from extremely low apparent temperature (AT). Here a deep convolutional neural network model together with a statistical downscaling framework is developed to forecast environmental factors for 1 to 12 h in advance to evaluate the effectiveness of deep learning for AT prediction at 1 km resolution. The experiments use data for temperature, wind speed and relative humidity in ERA-5 and the results show that the developed deep learning model can predict the upcoming extreme low temperature AT event in the Gansu marathon region several hours in advance with better accuracy than climatological and persistence forecasting methods. The hypothermia time estimated by the deep learning method with a heat loss model agrees well with the observed estimation at 3-hour lead. Therefore, the developed deep learning forecasting method is effective for short-term AT prediction and hypothermia warnings at local areas.
In higher eukaryotes, the genes’ architecture has become an essential determinant of the variation in the number of transcripts (expression level) and the specificity of gene expression in plant tissue under stress conditions. The modern rise in genome-wide analysis accounts for summarizing the essential factors through the translocation of gene networks in a regulatory manner. Stress tolerance genes are in two groups: structural genes, which code for proteins and enzymes that directly protect cells from stress (such as genes for transporters, osmo-protectants, detoxifying enzymes, etc.), and the genes expressed in regulation and signal transduction (such as transcriptional factors (TFs) and protein kinases). The genetic regulation and protein activity arising from plants’ interaction with minerals and abiotic and biotic stresses utilize high-efficiency molecular profiling. Collecting gene expression data concerning gene regulation in plants towards focus predicts an acceptable model for efficient genomic tools. Thus, this review brings insights into modifying the expression study, providing a valuable source for assisting the involvement of genes in plant growth and metabolism-generating gene databases. The manuscript significantly contributes to understanding gene expression and regulation in plants, particularly under stress conditions. Its insights into stress tolerance mechanisms have substantial implications for crop improvement, making it highly relevant and valuable to the field.
There is a growing trend among elderly people to live alone and this trend is expected to increase in the future. Social isolation and limited support can have a negative impact on the physical and mental well-being of older adults. The increasing life expectancy and expanding geriatric population necessitate the development of innovative solutions to support their health, independence, and autonomy. This article addresses the key challenges and issues confronting the elderly and analyzes various IoT technologies and solutions proposed to enhance their lives. Smart home technologies improve the quality of life and enable older adults to live independently in their own homes while their adult children are at work. This article presents a smart home model for the elderly in Kazakhstan, based on their needs, concerns, and financial capabilities. The proposed prototype will be developed using an accessible, open-source intelligent system that includes health monitoring, medication adherence monitoring, alerting family members in case of falls or deteriorating health indicators, and video surveillance. Another advantage of this system is the automation of processes such as automatic lighting control, voice command functionality, home security, and climate control. Preliminary testing of the hardware model shows promising results, with plans for continuous improvement and evaluation as it is deployed. Key criteria for its implementation include affordability, accessibility, and feasibility. Based on Kazakhstan’s unique socio-cultural and economic context, this paper proposes a sophisticated smart home model tailored to the specific needs and financial capabilities of elderly Kazakhs.
Copyright © by EnPress Publisher. All rights reserved.