With the purpose of strengthening the knowledge and prevention of landslide disasters, this work develops a methodology that integrates geomorphological mapping with the elaboration of landslide susceptibility maps using geographic information systems (GIS) and the multiple logistic regression method (MLR). In Mexico, some isolated works have been carried out with GIS to evaluate slope stability. However, to date, no practical and standardized method has been developed to integrate geomorphological maps with landslide inventories using GIS. This paper shows the analysis carried out to develop a multitemporal landslide inventory together with the morphometric analysis and mapping technique for the El Estado River basin where, selected as the study area, is located on the southwestern slope of the Citlaltepetl or Pico de Orizaba volcano. The geological and geomorphological factors in combination with the high seasonal precipitation, the high degree of weathering and the steep slopes predispose its surfaces to landslides. To assess landslide susceptibility, a landslide inventory map was prepared using aerial photographs, followed by geomorphometric mapping (altimetry, slopes and geomorphology) and field work. With this information, landslide susceptibility was modeled using multiple logistic regression (MLR) within a GIS platform and the landslide susceptibility map was obtained.
Amid the unfolding Fourth Industrial Revolution, the integration of Logistics 4.0 with agribusiness has emerged as a pivotal nexus, harboring potential for transformational change while concurrently presenting multifaceted challenges. Through a meticulous content analysis, this systematic review delves deeply into the existing body of literature, elucidating the profound capacities of Logistics 4.0 in alleviating supply chain disruptions and underscoring its pivotal role in fostering value co-creation within agro-industrial services. The study sheds light on the transformative potential vested within nascent technologies, such as Internet of Things (IoT), Blockchain, and Artificial Intelligence (AI), and their promise in shaping the future landscape of agribusiness. However, the path forward is not without impediments; the research identifies cardinal barriers, most notably the absence of robust governmental policies and a pervasive lack of awareness, which collectively stymie the seamless incorporation of Industry 4.0 technologies within the realm of agribusiness. Significantly, this inquiry also highlights advancements in sustainable supply chain management, drawing attention to pivotal domains including digitalization, evolving labor paradigms, supply chain financing innovations, and heightened commitments to social responsibility. As we stand on the cusp of technological evolution, the study offers a forward-looking perspective, anticipating a subsequent transition towards Industry 5.0, characterized by the advent of hyper-cognitive systems, synergistic robotics, and AI-centric supply chains. In its culmination, the review presents prospective avenues for future research, emphasizing the indispensable need for relentless exploration and pragmatic solutions. This comprehensive synthesis not only sets the stage for future research endeavors but also extends invaluable insights for practitioners, policymakers, and academicians navigating the intricate labyrinthstry of Logistics 4.0 in agribusiness.
The study evaluates to what extent logistics performance and its components impact Vietnam’s bilateral export value. The augmented Gravity model is applied on panel data in the period from 2010 to 2018. Logistics efficiency is measured by Logistic performance index (LPI) and its sub-indices developed by the World Bank. A variety of diagnostic tests and estimation methods are employed to ensure the stability of the results. The main findings confirm that all explanatory variables demonstrate the expected signs, and aggregate logistics performance and its sub-indices have positive impacts on Vietnam’s export flows, with the magnitude of logistics impacts is greater than other factors in the research model. Among LPI components of Vietnam, Ease of arranging shipments index is the most influential factor on exports, followed by Infrastructure, Timeliness, and Quality of logistics services. These export’s effects are also identified by partners’ LPI indicators namely Quality of logistics services, Customs, Infrastructure, and Tracking and tracing.
Vietnamese e-commerce has recently experienced a robust growth, especially e-commerce platforms such as Shopee, Lazada, Tiki. Reverse logistics has been pointed out as having a significant impact on the performance of an e-commerce platform. To capture the actual impact of some reverse logistics factors, i.e, Return Processing Time (RPT), Return Policy (RP), Return Cost (RC), Customer Service (CSR), and Post-Return Product (PRP), on Customer Satisfaction (CS), an OLS model was conducted. The results indicated significant correlation between all independent variables and dependent variables, which CSR shows the greatest correlation and PRP shows the weakest correlation. The study then made some suggestions for e-commerce platforms in Vietnam to enhance their reverse logistics process to get higher customer satisfaction.
Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
Copyright © by EnPress Publisher. All rights reserved.