With the gradual penetration of artificial intelligence technology into various fields of society, it has brought many deeper and broader impacts, gradually improving the status of artificial intelligence in talent cultivation and education to adapt to the current development of social intelligence technology. Therefore, as the core course of artificial intelligence education in universities, machine learning needs to deeply analyze and explore the main factors that affect its development, in order to better mobilize students' learning enthusiasm and teachers' educational innovation, enhance the teaching and learning effectiveness of the course, and maximize the exploration of the educational achievements of artificial intelligence.
Fire hazard is often mapped as a static conditional probability of fire characteristics’ occurrence. We developed a dynamic product for operational risk management to forecast the probability of occurrence of fire radiative power in the locally possible near-maximum fire intensity range. We applied standard machine learning techniques to remotely sensed data. We used a block maxima approach to sample the most extreme fire radiative power (FRP) MODIS retrievals in free-burning fuels for each fire season between 2001 and 2020 and associated weather, fuel, and topography features in northwestern south America. We used the random forest algorithm for both classification and regression, implementing the backward stepwise repression procedure. We solved the classification problem predicting the probability of occurrence of near-maximum wildfire intensity with 75% recall out-of-sample in ten annual test sets running time series cross validation, and 77% recall and 85% ROC-AUC out-of-sample in a twenty-fold cross-validation to gauge a realistic expectation of model performance in production. We solved the regression problem predicting FRP with 86% r2 in-sample, but out-of-sample performance was unsatisfactory. Our model predicts well fatal and near-fatal incidents reported in Peru and Colombia out-of-sample in mountainous areas and unimodal fire regimes, the signal decays in bimodal fire regimes.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
The cost of diagnostic errors has been high in the developed world economics according to a number of recent studies and continues to rise. Up till now, a common process of performing image diagnostics for a growing number of conditions has been examination by a single human specialist (i.e., single-channel recognition and classification decision system). Such a system has natural limitations of unmitigated error that can be detected only much later in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. At the same time Machine Intelligence (ML, AI) systems, specifically those including deep neural network and large visual domain models have made significant progress in the field of general image recognition, in many instances achieving the level of an average human and in a growing number of cases, a human specialist in the effectiveness of image recognition tasks. The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and advantages of the rapidly evolving Artificial Intelligence technology to achieve real and measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. The proposal for a collaborative AI-human image diagnostics system falls directly into the scope of this program.
Money laundering has become a vital issue all over the world especially in the emerging economy over the last two decades. Till now, the developing and emerging countries face challenges about the remedies and inceptions of anti-money laundering issues. The objective of the study is to provide a thorough picture of the diversified movements of academic research on money laundering and anti-money laundering activities all over the world. This study aims at exploring the contemporary issues in Anti-money laundering based on the academic points of view. Further, the study is explored to render a portrayal of anti-money laundering activities from an emergency country context. A review of publicly available reports, published documents, daily newspapers, case studies, and previous academic research comprised the main sources of data for the study. It is found that the contemporary money laundering and anti-money laundering academic research might be classified into four broad categories. An emerging country like Bangladesh has taken little initiative to inductee anti-money laundering initiatives. It implies that for the successful implementation of anti-money laundering activities, good governance along with a congenial regulatory framework is a prerequisite in an emerging country context. In addition, the machine learning may enhance the quality of money laundering detections in Bangladesh.
Copyright © by EnPress Publisher. All rights reserved.