The study of metaphor has a long history, and it has gradually been taken seriously from the very beginning of Aristotle of ancient Greek. In 1980, American scholars George Lakoff and Mark Johnson published the book Metaphor We Lived By jointly, from which metaphor began to be known as a way of cognition. The differences in languages and cultures, together with the complicated working mechanism of metaphor, post a great challenge in translating metaphor in literary work. This paper analyzes example sentences taken from Chinese classical works. By comparing these sentences with their English translations, we can have a glimpse of the translation strategies often used in rendering metaphor.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Arabic rhetoric has traditionally relied on ancient texts and human interpretation for teaching purposes. The study investigates ChatGPT’s ability to analyze and interpret Arabic rhetorical devices, specifically examining its capacity to handle cultural and contextual elements in rhetorical analysis. Drawing on institutional implementation frameworks and recent educational technology research, this study examines policy considerations for Arabic rhetoric education in an AI-driven environment, with a particular focus on sustainable digital infrastructure development and systematic reforms needed to support AI integration. The study employed the comparative approach to analyze eight rhetorical examples, including metaphors (“Zaid is a lion”), similes (“Someone is a sea”), and metonymy (“A person full of ash”), then compare ChatGPT’s interpretations with traditional explanations from classical Arabic rhetoric texts, particularly “Dala’il al-I’jaaz” by al-Jurjani. The results demonstrate that ChatGPT can provide basic interpretations of simple rhetorical devices, but it struggles with understanding cultural contexts and multiple layers of meaning inherent in Arabic rhetoric. The findings indicate that AI tools, despite their potential for modernizing rhetoric education, currently serve best as supplementary teaching aids rather than replacements for traditional interpretative methods in Arabic rhetoric instruction.
Copyright © by EnPress Publisher. All rights reserved.