The main reason for the formation of nano-biotechnology is due to the penetration of nanotechnology in the biological field, nanotechnology research center is the study of nano-drug carrier. Nano-drug system targeted drug delivery to achieve drug release, increase the insoluble drugs and peptide drug bio-efficiency, reduce the toxicity and application of drugs and other aspects of the development of good prospects, and thus become one of the key research in recent years’ field. Synthesis and application of nanometer drug carriers this review is presented in recent years and its application to provide a comprehensive basis for the treatment process. Describes the nature and preparation of nano-drug carrier methods, in recent years, people have been widely concerned by scholars. Compared with the nano-drug delivery, the general pharmaceutical cannot have to extend the role of drugs, strong efficacy, and the advantages of small drug response. Nano-materials, the specific surface area, surface activity, high catalytic efficiency, surface active center, adsorption capacity and other characteristics, which has many excellent features and new features.
With the progress of science and technology, the research and development of silver nanoparticles has also developed. This paper attempts to prepare a silver nanoparticle by electrolyzing AgNO3 solution with electrochemical reduction method and citric acid as a complexing agent in a certain current and time. The crystal morphology and sample purity of silver nanoparticles were analyzed by X-ray diffractometer. The crystal structure of the nanoparticles was analyzed by scanning electron microscopy (SEM). The crystal structure of the nanoparticles was analyzed by X-ray diffraction. The particle size distribution of the particles was in the range of 125-199 nm, and the carbon paste electrode was modified with the prepared silver nanoparticles. The electrocatalytic activity of the carbon paste electrode was preliminarily explored.
In this paper silver nanoparticles (NPs) which are synthesized by a simple plasma arc discharge method, that is a kind of electrochemical methods, are examined. The method is very simple and silver NPs are obtained very fast by means of two polished silver plates and electrochemical cell. The effects of changing some terms of the experiment including using Hydrogen peroxide (H2O2), temperature and the medium of experiment on oxygen percent and crystalline structure of silver NPs have been studied by transmission electron microscopy, UV-visible spectrophotometery, and X-ray diffraction. Water medium gets larger nanoparticles with less oxygen content compare to air medium. The size of synthesized nanoparticles become smaller and they also become more spherical by using H2O2 in air medium. In water medium, the size and concentration of the silver crystallite increase by temperature growth and adding H2O2 respectively.
This review provided a detailed overview of the different synthesis and characterization methods of polymeric nanoparticles. Nanoparticles are defined as solid and colloidal particles of macromolecular substances ranging in size under 100 nm. Different types of nanoparticles are used in many biological fields (bio-sensing, biological separation, molecular imaging, anticancer therapy, etc.). The new features and functions provided by nano dimensions are largely different from their bulk forms. High volume/surface ratio, improved resolution and multifunctional capability make these materials gain many new features.
New hybrid magnetic materials based on HDPE filled with Со and Ni nanoparticles have been prepared via the metal vapor synthesis. Properties of the metal-polymer composites have been elucidated as a function of MVS parameters and metal nature. The Faraday method has been applied to characterize the magnetic properties of the systems. The microstructure of the samples has been studied with a number of X-ray and synchrotron techniques, including XRD, EXAFS and SAXS. Core-level and valence band spectra were measured by XPS. The peak at binding energy of 282.8 eV characteristic of C-Ni bond was recorded in the C 1s spectrum. It was shown that properties of nanocomposite materials with similar compositions are determined both by the synthesis conditions and post-synthesis factors.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Copyright © by EnPress Publisher. All rights reserved.