Background: Multiple sclerosis is often a longitudinal disease continuum with an initial relapsing-remitting phase (RRMS) and later secondary progression (SPMS). Most currently approved therapies are not sufficiently effective in SPMS. Early detection of SPMS conversion is therefore critical for therapy selection. Important decision-making tools may include testing of partial cognitive performance and magnetic resonance imaging (MRI). Aim of the work: To demonstrate the importance of cognitive testing and MRI for the prediction and detection of SPMS conversion. Elaboration of strategies for follow-up and therapy management in practice, especially in outpatient care. Material and methods: Review based on an unsystematic literature search. Results: Standardized cognitive testing can be helpful for early SPMS diagnosis and facilitate progression assessment. Annual use of sensitive screening tests such as Symbol Digit Modalities Test (SDMT) and Brief Visual Memory Test-Revised (BVMT-R) or the Brief International Cognitive Assessment for MS (BICAMS) test battery is recommended. Persistent inflammatory activity on MRI in the first three years of disease and the presence of cortical lesions are predictive of SPMS conversion. Standardized MRI monitoring for features of progressive MS can support clinically and neurocognitively based suspicion of SPMS. Discussion: Interdisciplinary care of MS patients by clinically skilled neurologists, supported by neuropsychological testing and MRI, has a high value for SPMS prediction and diagnosis. The latter allows early conversion to appropriate therapies, as SPMS requires different interventions than RRMS. After drug switching, clinical, neuropsychological, and imaging vigilance allows stringent monitoring for neuroinflammatory and degenerative activity as well as treatment complications.
Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells within the bone marrow. It is the most serious form of plasma cell dyscrasias, whose complications—hypercalcemia, renal failure, anemia, and lytic bone lesions—are severe and justify the therapeutic management. Imaging of bone lesions is a cardinal element in the diagnosis, staging, study of response to therapy, and prognostic evaluation of patients with MM. Historically, the skeletal radiographic workup (SRW), covering the entire axial skeleton, has been used to detect bone lesions. Over time, new imaging techniques that are more powerful than SRW have been evaluated. Low-dose and whole-body computed tomography (CT) supplants SRW for the detection of bone involvement, but is of limited value in assessing therapeutic response. Bone marrow MRI, initially studying the axial pelvic-spinal skeleton and more recently the whole body, is an attractive alternative. Beyond its non-irradiating character, its sensitivity for the detection of marrow damage, its capacity to evaluate the therapeutic response and its prognostic value has been demonstrated. This well-established technique has been incorporated into disease staging systems by many health systems and scientific authorities. Along with positron emission tomography (PET)-18 fluorodeoxyglucose CT, it constitutes the current imaging of choice for MM. This article illustrates the progress of the MRI technique over the past three decades and situates its role in the management of patients with MM.
Intra-regional trade serves as a key growth engine for East Asian economies. Accompanying the rapid growth of bilateral and intra-regional trade ties, the East Asian economies are becoming increasingly connected and interdependent. Infrastructure connectivity plays a crucial role in bridging different areas of the East Asian region and enabling them to reap the full socioeconomic benefits of economic cooperation and integration. Nevertheless, further improvement of infrastructure in the region faces major challenges due to the lack of effective mechanisms for coordination and dialogue on regional integration through funding infrastructure projects, as well as the serious trust deficit among member states that has arisen from the on-going territorial and historical disputes.
The development of flexible, wearable electronic devices is one of the future directions of technology development. Flexible conductive materials are important supporting materials for wearable electronic devices. Polymer has excellent flexibility; it is an important way to prepare flexible conductors from polymer-based conductive composites. In this paper, the research progress of polymer-based flexible conductive composites is summarized in terms of preparation and characterization methods. The key factors to realize flexible conductors are put forward, namely, the maintenance of excellent polymer elasticity and the realization of stability. The design and preparation of the extensible conductor with high-elasticity matrix and nanofiller are introduced in detail, and the problems in the current research are summarized.
Benzoxazine resin, a new type of phenolic resin, has many advantages, such as a strong molecular design, no small molecular release in the curing process, excellent thermal stability and mechanical properties, and a high residual carbon ratio. Thus, it is important for electronic communication industry matrix material. To meet the needs of high-frequency and high-speed communication technology for low-dielectric polymer resin, the low-dielectric modification of benzoxazine resin is of great significance to the high frequency and high-speed propagation of the signal, which attracts a wide range of materials researchers’ attention. In this paper, we review a series of studies on the low dielectric modification of benzoxazine resin in recent years, including the synthesis of new monomers, inorganic - organic hybridization, copolymerization with other resins, and low molecular weight benzoxazine resin research trends.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
Copyright © by EnPress Publisher. All rights reserved.