Currently there is a great acceptance in medicine and dentistry that clinical practice should be “evidence-based” as much as possible. That is why multiple works have been published aimed at decreasing radiation doses in the different types of imaging modalities used in dentistry, since the greater effect of radiation, especially in children, forces us to take necessary measures to rationalize its use, especially with Cone Beam computed tomography (CBCT), the method that provides the highest doses in dentistry. This review was written using such an approach with the purpose of rationalizing the radiation dose in our patients. In order to formulate recommendations that contribute to the optimization of the use of ionizing radiation in dentistry, the SEDENTEXCT project team compiled and analyzed relevant publications in the literature, guidelines that have demonstrated their efficiency in the past, thus helping to see with different perspectives the dose received by patients, and with this, it is recommended taking into account this document so as to prescribe more adequately the complementary examinations that we use on a daily basis.
Infrared thermal imaging technology is another new branch for medical imaging after traditional medical imaging technologies such as X-ray, ultrasound and magnetic resonance (MRI). It has the advantages of noninvasive, nondestructive, simple and fast. Its application can radiate multiple clinical departments. This paper mainly expounds the principle, influencing factors of medical infrared thermography and its application in radiation protection and other medical fields.
The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
In recent years, ghost imaging has made important progress in the field of remote sensing imaging. In order to promote the application of solar ghost imaging in this field, this paper studies the computational ghost imaging based on the incoherent light of blackbody radiation. Firstly, according to the intensity probability density function of blackbody radiation, the expression of contrast-to-noise ratio (RCN) describing the quality of computational ghost imaging is obtained, and then the random speckle pattern simulating blackbody radiation is generated by computer with the idea of slice sampling, finally, a digital light projector is used to modulate and generate the random modulated light that simulates the blackbody radiation light source, and this light source is used to realize the computational ghost image of the reflective object in the experiment. The “ghost image” of the object under different measurement frame numbers is reconstructed, and the contrast-to-noise ratio describing the imaging quality is measured. The results show that the image quality is relatively good when the average intensity (gray) of the randomly modulated speckle is about 160. On the other hand, the contrast-to-noise ratio of the image gradually increases from 0.8795 to 1.241, 1.516, 1.755, 2.100 and 2.371 as the number of measurement frames increases from 2,000 to 4,000, 6,000, 8,000, 12,000 and 20,000, respectively. The experimental results are basically consistent with the theoretical analysis. The results are of great significance for the application of ghost imaging with incoherent light, such as sunlight, which is approximately regarded as blackbody radiation, in the field of remote imaging.
In Costa Rica, there is no explicit recommendation from the competent authorities for the use of a specific phantom, so experts must explore what suppliers offer, among which the Normi Mam Digital phantom from PTW stands out. This article presents the results of the dosimetry and image quality control applied to the Normi Mam Digital phantom to validate it as equipment that complies with the recommendations of the Human Health Series No. 17. The results obtained were satisfactory, proving that the equipment complies with the tolerances recommended by international health bodies.
The optimized methodology and results of the new characterization in terms of dose and image quality of the X-ray system used in the main pediatric hemodynamics service in Chile are presented. In addition, scattered dose rate values at the operator’s eye level are reported for all acquisition modes available in different thicknesses of absorbent media and angiography. The characterization was performed according to the European DIMOND and SENTINEL protocols adapted to pediatric procedures. The air kerma at the entrance surface (ESAK) was measured and the image quality parameters signal-to-noise ratio (SNR) and a figure of merit (FOM) were calculated. The scattered dose rate was measured in personal dose equivalent units. The ESAK for fluoroscopic modes ranged from 0.2 to 35.6 μGy/image when passing from 4 to 20 cm of polymethyl methacrylate (PMMA). For the cine mode, these values ranged from 2.8 to 160.1 μGy/image. The values of the image quality parameters showed a correct system configuration, although abnormal values were observed in the medium fluoroscopic mode. As for the scattered dose rate at the level of the cardiologist’s eyes, the highest value is PMMA with a thickness of 20 cm, where the cine mode reached 9.41 mSv·h-1. The differences found from previous evaluations can be explained by the deterioration of the system and the change of one of the X-ray tubes.
Copyright © by EnPress Publisher. All rights reserved.