Introduction: The selection of genotypes with determinate growth habit in tomato should contemplate adequate selection criteria to increase the efficiency of the breeding program. Objective: The objective of this work was to estimate selection criteria for “chonto” type tomato lines with determined growth habit. Materials and methods: This work was carried out at the Universidad Nacional de Colombia (Palmira Campus), in 2016, with seven lines with determinate growth habit and a control with indeterminate growth. Heritability in a broad sense (h2 g), coefficient of environmental variation, coefficient of genetic variation, selection efficiency and genetic gain were determined in parameters of morphological, phonological, fruit quality, fruit shape and production, using the RELM/BLUP procedure of the SELEGEN software. Results: There were three ranges of h2 g, the first with values of h2 g greater than 0.76, the second between 0.53 and 0.38, and the third with a value less than 0.38. The highest values of h2 g were for final plant height with 0.92, plant height at harvest with 0.88, yield per plant with 0.83, days to flowering with 0.83, number of fruits per plant with 0.82, and days to harvest with 0.82. For genetic gain it was found that the control had the highest values for final plant height, plant height at harvest, internode length, days to harvest, harvest duration, soluble solids content, number of fruits per plant, fruit weight and yield per plant; however, in some parameters such as height and phenology for selection by determined growth habit, the lowest values were better. Conclusion: There was evidence of genetic parameters that could be considered as selection criteria for “chonto” type tomato lines with determinate growth habit.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
Twenty-two tomato (Solanum lycopersicum L.) genotypes were examined for correlation and path analysis in the randomized block design under open field conditions. Total fruit yield showed a significant positive correlation with the number of fruits per plant, average fruit weight, lycopene content, and percent seedling survival in the field at both the genotypic and phenotypic levels. A strong correlation between these characters revealed that selection based on these characters would consequently improve the total fruit yield. Path analysis showed that the number of fruits per plant, average fruit weight, percent seedling survival in the nursery, and number of locules per fruit exhibited high positive direct phenotypic effects on total fruit yield, whereas the number of fruits per plant, average fruit weight, percent seedling survival in the field, and pollen viability had very high positive direct genotypic effects. Therefore, to increase the yield, it would be profitable to prioritize these traits in the selection program.
Copyright © by EnPress Publisher. All rights reserved.