Experimental study on waste heat recovery characteristics of inorganic ceramic membrane flue gas
The wet saturated flue gas discharged by coal-fired utility boilers leads to a large amount of low-temperature waste heat loss. Inorganic ceramic membrane is acid-base resistant and has strong chemical stability. It is an ideal material for recovering low-temperature waste heat from flue gas. The experiment of waste heat recovery of flue gas was carried out with inorganic ceramic membrane as the core, and the characteristic parameters of low-temperature flue gas at the tail of the boiler were analyzed; taking 316 L stainless steel as the comparative object, the strengthening effect of inorganic ceramic film on improving heat recovery power and composite heat transfer coefficient was discussed. The results show that the waste heat recovery of flue gas is mainly the evaporation latent heat recovery of water, accounting for about 90%; circulating water is used as cooling medium, and the waste heat recovery capacity of flue gas is stronger; compared with circulating water, when air is used as the cooling medium, the effect of inorganic ceramic membrane flue gas waste heat recovery is more significant, and the enhancement coefficient is as high as 9; increasing the flue gas flow is helpful to improve the heat recovery power and composite heat transfer coefficient; at the same time, inorganic ceramic membrane can also recover condensate with high water quality. The results of this paper can provide a reference for the application of inorganic ceramic membrane in flue gas waste heat recovery.