This study used quantitative methods to examine the correlation between adaptive learning technology and cognitive flexibility in kids receiving special education. The study included a cohort of 120 kids, ages 8–12, who were diagnosed with particular learning difficulties, ADHD, or autism spectrum disorder. Cognitive flexibility was evaluated using the Wisconsin Card Sorting Test (WCST), while the utilization of adaptive learning technologies was quantified using self–report questionnaires. The data was analyzed using several statistical methods, such as independent samples t-tests, regression, Pearson correlation coefficients, ANOVA, and ANCOVA. The findings revealed a noteworthy and favorable correlation between the utilization of adaptive technology and the scores of cognitive flexibilities. This correlation remained significant even after accounting for demographic characteristics. Moreover, it was shown that the diagnostic status had a moderating effect on the correlation between the utilization of adaptive technology and cognitive flexibility. The results emphasize the capacity of adaptive learning technologies to improve cognitive flexibility abilities in kids with special needs, offering significant knowledge for educators, legislators, and technology developers.
The advent of Artificial Intelligence (AI) has transformed Learning Management Systems (LMSs), enabled personalized adaptation and facilitated distance education. This study employs a bibliometric analysis based on PRISMA-2020 to examine the integration of AI in LMSs from an educational perspective. Despite the rapid progress observed in this field, the literature reveals gaps in the effectiveness and acceptance of virtual assistants in educational contexts. Therefore, the objective of this study is to examine research trends on the use of AI in LMSs. The results indicate a quadratic polynomial growth of 99.42%, with the years 2021 and 2015 representing the most significant growth. Thematic references include authors such as Li J and Cavus N, the journal Lecture Notes in Computer Science, and countries such as China and India. The thematic evolution can be observed from topics such as regression analysis to LMS and e-learning. The terms e-learning, ontology, and ant colony optimization are highlighted in the thematic clusters. A temporal analysis reveals that suggestions such as a Cartesian plane and a league table offer a detailed view of the evolution of key terms. This analysis reveals that emerging and growing words such as Learning Style and Learning Management Systems are worthy of further investigation. The development of a future research agenda emerges as a key need to address gaps.
Copyright © by EnPress Publisher. All rights reserved.