Antioxidants are derivatives of vitamin C or beta-carotene that prevent reactions stimulated by oxygen, peroxides, or free radicals, thus reducing the oxidative stress. They have found their way into many uses in treating several human diseases and reducing the risk of developing diseases like cancer. In view of this property, the present study was focussed in identifying several plants possessing antioxidative properties and which were also conserved in the ex-situ park of CSIR – Central Institute of Mining and Fuel Research, Dhanbad, India. Fifteen medicinal plants including herbs, shrubs and grasses are reported in this paper, and a collective insight has been presented about their antioxidant properties and the present state of their pharmacological applications. The specific chemical constituents abundant in the leaves, roots, stems, seeds and fruits of each of these plants have also been dealt with. To report a few antioxidant pharmacological preparations from Ayurvedic literature are Vimang, Maharishi Amrit Kalash (MAK4, MAK5), Maharishi Ayurved (MA631, MA47), MA Raja’s Cup, MA Student Rasayana and MA Ladies Rasayana. This review has been attempted to enhance the importance of the plants which are generally being neglected, so that it can used by the local people in rural areas for their cultivation and it will also pave the pathway for their subsequent future use in medicinal and research industry for drug formulation.
Plum (Prunus domestica) is a seasonal nutraceutical fruit rich in many functional food nutrients such as vitamin C, antioxidants, total phenolic content, and minerals. Recently, researchers have focused on improvised technologies for the retention of bioactive compounds during the processing of perishable fruits; plum is one of these fruits. This study looked at how the percentage of moisture content and percentage of acidity were affected by conventional drying and osmotic dehydration. Total phenolic content (mg GA/100 g of plum), total anthocyanin content (mg/100 g), and vitamin C (mg/100 g) Conventional drying of fruit was carried out at 80.0 ℃ for 5 h. At various temperatures (45.0 ℃, 50.0 ℃, and 55.0 ℃) and hypertonic solution concentrations (65.0 B, 70.0 B, and 75.0 B), the whole fruit was osmotically dehydrated. It was observed that the osmotically treated fruit retains more nutrients than conventionally dried fruit. The total phenolic content of fruit significantly increased with the increase in process temperature. However, vitamin C and total anthocyanin content of the fruit decreased significantly with process temperature, and hypertonic solution concentration was observed. Hence, it was concluded that osmodehydration could be employed for nutrient retention in plum fruit over conventional drying. This process needs to be further refined, improvised, and optimised for plum processing.
Copyright © by EnPress Publisher. All rights reserved.