The silver nanoparticles (AgNPs) exhibit unique and tunable plasmonic properties. The size and shape of these particles can manipulate their localized surface plasmon resonance (LSPR) property and their response to the local environment. The LSPR property of nanoparticles is exploited by their optical, chemical, and biological sensing. This is an interdisciplinary area that involves chemistry, biology, and materials science. In this paper, a polymer system is used with the optimization technique of blending two polymers. The two polymer composites polystyrene/poly (4-vinylpyridine) (PS/P4VP) (50:50) and (75:25) were used as found suitable by their previous morphological studies. The results of 50, 95, and 50, 150 nm thicknesses of silver nanoparticles deposited on PS/P4VP (50:50) and (75:25) were explored to observe their optical sensitivity. The nature of the polymer composite embedded with silver nanoparticles affects the size of the nanoparticle and its distribution in the matrix. The polymer composites used are found to have a uniform distribution of nanoparticles of various sizes. The optical properties of Ag nanoparticles embedded in suitable polymer composites for the development of the latest plasmonic applications, owing to their unique properties, were explored. The sensing capability of a particular polymer composite is found to depend on the size of the nanoparticle embedded in it. The optimum result has been found for silver nanoparticles of 150 nm thickness deposited on PS/P4VP (75:25).
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
Cysteine is one of the body’s essential amino acids to build proteins. For the early diagnosis of a number of diseases and biological issues, L-cysteine (L-Cys) is essential. Our study presents an electrochemical sensor that detects L-cysteine by immobilizing the horseradish peroxidase (HRP) enzyme on a reduced graphene oxide (GCE) modified glassy carbon electrode. The morphologies and chemical compositions of synthesized materials were examined using Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The modified electrode’s electrochemical behavior was investigated using cyclic voltammetry (CV). Cyclic voltammetry demonstrated HRP/rGO/GCE has better electrocatalytic activity than bare GCE in the oxidation of L-cysteine oxidation in a solution of acetate buffer. The electrochemical sensor had a broad linear range of 0 µM to 1 mM, a 0.32 µM detection limit, and a sensitivity of 6.08 μA μM−1 cm−2. The developed sensor was successfully used for the L-cysteine detection in a real blood sample with good results.
Copyright © by EnPress Publisher. All rights reserved.