With the continuous development of facilities and horticulture, the area of vegetable planting in facilities increased year by year. Watermelon (Citrullus vulgaris Schrad) as the main cultivars within the facility, the continuous cropping problem is very serious, resulting in continuous cropping obstacles become increasingly obvious, the incidence of fusarium wilt increased year by year. Grafted watermelon roots developed to improve the growth of grafted roots of the conditions, resulting in robust plant growth. At the same time, the use of different purposes of the rootstock can make watermelon in different soil conditions under normal growth, such as the use of low temperature, drought, salt tolerance, barren and other characteristics of the rootstock. Secondly, the rootstock of the strong absorption of water absorption capacity, to promote the growth of grafted watermelon plants strong, large watermelon fruit, high yields. In addition, grafted watermelon seedlings grow fast early, for early maturing cultivation and overcome the seedless watermelon early growth slow defects is extremely favorable. So the use of pumpkin as a watermelon grafting rootstock, can effectively improve the effect of watermelon resistance to Fusarium wilts. And provide the theoretical basis and scientific basis for the further study of photosynthetic characteristics, disease resistance breeding and effective control of watermelon. In this experiment, the watermelon varieties with different resistance to fusarium wilt were selected, and the anti-fusarium wilt watermelon was studied systematically. There are changes in physiological characteristics during growth and development. In conclusion, grafting promotes the growth of watermelon and physiological characteristics of the index rose.
KEYWORDS: watermelon; fusarium wilt; growth period; physiological characteristics
In this article, generalized differential quadrature method (GDQM) is used to study the free vibrational behavior of variable cross section nano beams. Eringen's nonlocal elastic theory is taken into account to model the small scale effects and nonuniformity is assumed by exponentially varying the width of nano beam. Governing equation of motion is solved using generalized differential quadrature method with different numbers of sampling points. Effects of increasing the sampling points in reaching more accurate results for first three frequency parameters are presented and it is shown that after a specific number of sampling points, results merge to a certain accurate number. It is concluded that generalized differential quadrature method is able to reach the correct answers comparing to analytical results. Moreover, due to the stiffness softening behavior of small-scale structures, necessity of using Eringen's nonlocal elastic theory to model the small scale effects due to the frequency variation is observed. |
The regularity and variability of the composition distribution of the pyrolysis products of corn stover fermentation residue and phenolic resin with the pyrolysis temperature were investigated by thermogravimetry (TG) and lyser-gas/mass spectrometer (Py-GC/MS). The results show that toluene, phenol and methyl phenol are the main common components of the two systems, 2,3-dihydrobenzofuran, alkoxy compounds and a small amount of carboxylic acid are the unique components in the pyrolysis products of corn straw fermentation residue, while dimethyl phenol, 9H-xanthene and other components in the phenolic. This is a reflection of the differences in the composition and structure of the two raw materials.
Based on 898 English documents and 363 Chinese documents citing the Rising of Network Society, it studied that the knowledge contribution of citation content analysis and citation context analysis methods, and the knowledge contribution of Chinese and foreign quotations to human geography. The study found that “mobile space” is the most quoted theoretical view in domestic and foreign literature, and the proportion of domestic research is significantly higher than foreign research; the focus of domestic and foreign research focuses on the external spatial form and its transformation, while foreign research pays more attention on the internal spatial dynamics of network society and three types of knowledge contributions, reflecting the influence of “network social theory” on human geography. Among them, critical references reveal the shortcomings of “network social theory” point out the abstraction of “spatial duality” the importance of local space, and the limitations of research data, methods, and time background, which provides new enlightenment for the future application and innovation of “network social theory” in the field of human geography.
Taking the 13 years pure artificial forest Phoebe chekiangensis and heterogeneous mixed forests in Tiantong mountain, Zhejiang Province as the research object, the characteristics of stand development, tree competition differentiation, tree height/breast diameter ratio and dominant wood growth were compared and analyzed from the perspective of ecology. The results show that compared with pure forests, the growth advantages of heterogeneous mixed-age forests were significant. Average breast diameter growth of stand increased 1.8%; the growth of single plant wood accumulation increased 7.4%. The relationship between tree height and diameter showed that the high growth of Phoebe chekiangensis individuals in the heterogeneous mixed forest was significantly promoted, and the high growth of the tree was 8.4% higher than that of pure forest. 1–5 grade wood scale sizes Phoebe chekiangensis in heterogeneous mixed forests and pure forests are ranked grade 3 (43.7%) > grade 2 (26.5%) > grade 4 (15.7%) > grade 1 (12.9%) > grade 5 (1.2%); grade 3 (34.7%) > level 2 (25.6%) > level 4 (20.0%) > level 1 (18.2%) > level 5 (1.2%); the straight-diameter structure shows a normal distribution, and the degree of differentiation of pure forests is greater than that of heterogeneous forests. The dominant trees of Phoebe chekiangensis pure forest and heterogeneous forest accounted for 18.2% and 12.9% of the total number of plants respectively, providing a reserve of 51.1% and 35.4% respectively, reflecting the contribution of dominant trees caused by the self-thinning effect.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
Copyright © by EnPress Publisher. All rights reserved.