Green cosmetics made from organic ingredients are becoming increasingly popular due to their environmentally friendly nature. However, research on consumer behavior towards green cosmetics is rare, especially in developing countries like Pakistan. Previous studies have primarily focused on female consumers, and little is known about the behavior of male consumers. Therefore, this research aims to investigate the behavior of both male and female consumers towards green cosmetic products and analyze the factors that affect their purchase behavior. This study employs a quantitative approach with deductive reasoning and collects data through a questionnaire from major cities in Pakistan. The study finds that eco-awareness, social influence, price-quality instructions, health consciousness, and the need for uniqueness significantly influence consumer purchase behavior when buying green cosmetics. Interestingly, price sensitivity does not significantly affect consumer purchase behavior as consumers are willing to pay for high-quality green cosmetics. Based on the findings, the study recommends promoting eco-awareness and health consciousness among consumers through educational campaigns and workshops launched by the government and the private sector. Future research can explore factors such as age, gender, and specific generations like millennials and Generation Z, as well as packaging, branding, and product design to promote environmentally friendly and health-conscious products. Additionally, comparative studies between countries can identify universal and region-specific factors, and examining the overall impact of green cosmetic products on the environment can highlight areas for improvement in sustainability.
Mobile banking has become very important in today’s life as technological advancements have led bank clients to use banking services. Clients’ attitudes toward mobile banking services are based on their expectations is the background of this research. So, the main objective is to observe the purposeful conduct in mind of clients to adopt mobile banking services. This study also examines the influence of six variables on financial services clients’ desire to utilize mobile banking services, including perceived benefits, perceived ease of use, trust, security, perceived privacy, and technology expertise. Consequently, the goal of this study is to find out the crucial and deciding factors that may influence clients’ willingness to use mobile banking features in Bangladesh as a developing country. The sample shaped for this research is 310 respondents from Bangladesh a developing country. For analytical purposes, SEM has been used to test hypotheses. The results show that in Bangladesh, factors like perceived value, security, and technological aptitude greatly determine whether a customer will utilize mobile banking. Financial institutions have proven to be successful in serving clients through mobile phones. Clients have made good use of mobile banking only to save money, cost, and labor. The research suggests that mobile banking operations must be timely and accurate, the transaction process must be short, interactivity, convenience of usage, and so on. The findings have important implications for bank regulatory authority, management, bankers, and executives who wish to increase mobile banking usage to secure their long-term profitability.
This study investigates the influence of perceived value and perceived risk on consumer intentions to purchase counterfeit luxury goods, drawing upon an integrated theoretical framework encompassing perceived value theory, risk perception theory, and consumer behavior models. Through a quantitative research design involving a structured survey and Structural Equation Modeling (SEM), the study examines the relationships among perceived value dimensions (functional, emotional, social, economic), perceived risk factors (financial, social, performance), consumer attitudes, and purchase intentions. The findings reveal that perceived value positively influences purchase intentions, with consumer attitudes acting as a critical mediating mechanism. Conversely, perceived risk negatively impacts purchase intentions, with this relationship also mediated by consumer attitudes. Furthermore, Bayesian Network analysis uncovers the indirect pathways through which perceived risk shapes purchase intentions via its influence on consumer attitudes. By integrating these theoretical frameworks and employing advanced analytical techniques, this study contributes to a comprehensive understanding of the complex decision-making processes underlying counterfeit luxury goods consumption. The findings provide valuable insights for policymakers, luxury brand managers, and consumer protection agencies in devising targeted strategies to address consumer perceptions of value and risk, ultimately mitigating the proliferation of counterfeit luxury goods.
Artificial Intelligence (AI) has become a pivotal force in transforming the retail industry, particularly in the online shopping environment. This study investigates the impact of various AI applications—such as personalized recommendations, chatbots, predictive analytics, and social media engagement—on consumer buying behaviors. Employing a quantitative research design, data was collected from 760 respondents through a structured online survey. The snowball sampling technique facilitated the recruitment of participants, focusing on diverse demographics and their interactions with AI technologies in online retail. The findings reveal that AI-driven personalization significantly enhances consumer purchase intentions and satisfaction. Multiple regression analysis shows that AI personalization (β = 0.35, p < 0.001) has the most substantial impact on purchase intention, followed by chatbot effectiveness (β = 0.25, p < 0.001), predictive analytics (β = 0.20, p < 0.001), and social media engagement (β = 0.15, p < 0.01). Similarly, AI personalization (β = 0.30, p < 0.001), predictive analytics (β = 0.25, p < 0.001), and chatbot effectiveness (β = 0.20, p < 0.001) significantly influence consumer satisfaction. The hierarchical regression analysis underscores the importance of ethical considerations, showing that ethical and transparent use of AI increases consumer trust and engagement. Model 1 explains 45% of the variance in consumer behavior (R2 = 0.45, F = 154.75, p < 0.001), while Model 2, incorporating ethical concerns, explains an additional 10% (R2 = 0.55, F = 98.25, p < 0.001). This study highlights the necessity for retailers to leverage AI technologies ethically and effectively to gain a competitive edge, improve customer satisfaction, and drive long-term success. Future research should explore the long-term impacts of AI on consumer behavior and the integration of emerging technologies such as augmented reality and the Internet of Things (IoT) in retail.
Noise pollution in construction sites is a significant concern, impacting worker health, safety, communication, and productivity. The current study aims to assess the paramount consequences of ambient noise pollution on construction activities and workers’ productivity in Peshawar, Pakistan. Noise measurements have been recorded at four different construction sites in Peshawar at different times of the day. Statistical analysis and Relative Importance Index (RII) are employed to evaluate the data Risk variables, such as equipment maintenance, noise control, increased workload, material handling challenges, quality control issues, and client satisfaction. The results indicated that noise levels often exceeded permissible limits, particularly in the afternoon, posing significant worker risks. In addition, RII analysis identified communication difficulties, safety hazards, and decreased productivity as significant issues. The results show that noise pollution is directly linked with safety risks, decreased performance, and client dissatisfaction and needs immediate attention by authorities. This paper proposes a strategic policy framework, recommending uniform hand signals and visual communication methods without noise for workers, worker training about safety, and using wearable devices in noisy settings. Communication training for teams and crane operators, proactive quality control, and customer-oriented project schedules are also proposed. These recommendations aim to mitigate the adverse effects of noise pollution, enhance construction industry resilience, and improve overall operational efficiency, worker safety, and client satisfaction in the construction sector of Peshawar, aligning with policy and sustainable development objectives.
Copyright © by EnPress Publisher. All rights reserved.