This paper reviews the emerging potential of mid-tier transit, articulating how a complex set of established and new factors could contribute both to better transit outcomes and the associated urban regeneration around station precincts. The analysis is based on two structured literature reviews, supported by insights from the authors’ original research. The first provides an overview of the established and new rationale for mid-tier technologies such as the established Light Rail Transit (LRT) and Bus Rapid Transit (BRT) as well as the new Trackless Tram Systems (TTS). The established role for mid-tier transit is now being given extra reasons for it to be a major focus of urban infrastructure especially due to the need for net zero cities. The second review, is a detailed consideration of established and new factors that can potentially improve patronage on mid-tier transit. The established factors of urban precinct design like stop amenities and improved accessibility and density around stations, are combined with new smart technology systems like advanced intelligent transport systems and real-time transport information for travellers, as well as new transport technologies such as micro-mobility and Mobility on Demand. Also explored are new processes with funding and development models that properly leverage land value capture, public private partnerships, and other entrepreneurial development approaches that are still largely not mainstreamed. All were found to potentially work, especially if done together, to help cities move into greater mid-tier transit.
Improving the competitiveness of tourism destinations is crucial for driving local economies and achieving income growth. In light of this evidence, numerous government departments strive to assess specific factors that impact the competitiveness of tourism destinations, enabling them to issue appropriate new tourism policies that promote more effective forms of tourism business. Therefore, the primary objective of this paper is to investigate how various elements such as tourism resources, tourism support, tourism management, location conditions, and tourism demand influence regional competitiveness in the Northern Bay region of Guangxi Province in China. To accomplish this goal, an online survey was conducted to collect data from 420 visitors who had experienced North Gulf Tourism; yielding an impressive response rate of 95 percent. The findings reveal that all aforementioned factors—namely: Tourism resources, tourism support, tourism management, location conditions and tourist demand—significantly impact destination competitiveness. Notably though, it was found that among these factors influencing destination competitiveness; it is primarily determined by effective local-level management (β = 0.345). Following closely behind are tourist demand (β = 0.133) as the second most influential factor affecting destination competitiveness; followed by location conditions (β = 0.116) ranking third; then comes tourist support (β = 0.03) as fourth in line impacting destination competitiveness; finally with least impact being exerted by available tourist resources (β = 0.016). Consequently, highlighting that regional competitiveness within Guangxi’s Northern Bay area predominantly hinges on efficient local-level management practices thus strongly recommending relevant authorities formulate novel work policies aimed at enhancing levels of local-level competitive advantage within the realm of regional touristic offerings.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
Although various actors have examined the user acceptance of e-government developments, less attention has so far devoted to the relationship between attitudes of certain commuter groups against digital technologies and their intention to engage in productive time-use by mobile devices. This paper aims to fill this gap by establishing an overall framework which focuses on Hungarian commuters’ attitudes toward e-government applications as well as their possible demands of developing them. Relying on a representative questionnaire survey conducted in Hungary in March and April 2020, the data were examined by a machine learning and correlations to identify the factors, attitudes and demands that influence the use of mobile devices during frequent commuting. The paper argues that the regularity of commuting in rural areas, as well as the higher levels of qualification and employment status in cities show a more positive, technophile attitude to new ICT and mobile technologies that strengthen the demands for digital development, with special regard to optimising e-government applications for certain types of commuting groups. One of the main limitations of this study is that results suggest a picture of the commuters in a narrow timeframe. The findings suggest that developing e-government applications is necessary and desirable from both of the supply and demand sides. Based on prior scholarly knowledge, no research has ever analysed these correlations in Hungary where commuters are among the European citizens who spend extensive time with commuting.
Copyright © by EnPress Publisher. All rights reserved.