Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
The study explores improving opportunities of forecasting accuracy from the traditional method through advanced forecasting techniques. This enables companies to optimize inventory management, production planning, and reducing the travelling time thorough vehicle route optimization. The article introduced a holistic framework by deploying advanced demand forecasting techniques i.e., AutoRegressive Integrated Moving Average (ARIMA) and Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) models, and the Vehicle Routing Problem with Time Windows (VRPTW) approach. The actual milk demand data came from the company and two forecasting models, ARIMA and RNN-LSTM, have been deployed using Python Jupyter notebook and compared them in terms of various precision measures. VRPTW established not only the optimal routes for a fleet of six vehicles but also tactical scheduling which contributes to a streamlined and agile raw milk collection process, ensuring a harmonious and resource-efficient operation. The proposed approach succeeded on dropping about 16% of total travel time and capable of making predictions with approximately 2% increased accuracy than before.
Copyright © by EnPress Publisher. All rights reserved.