This study offers a focused examination on Xinfang system, China’s unique mechanism particularly on its ability and efficacy in mediating land disputes between farmers and governmental bodies for social governance purposes. Based on interviews with 10 farmers, the study elucidates the system has low entry barriers and user-friendly, thus fast becoming the preferred system option when dealing with land conflicts. Xinfang facilitates direct communication between farmers and government officials, thereby in line with the sociocultural conventions of the rural populace. The study also highlights several constraints. While the Xinfang system employs a multifaceted approach to conflict resolution, including negotiation and grassroots governmental intervention, it lacks legislative power and institutional authority that are required for effective management of more complex or multi-stakeholder land disputes. The study advocates for a comprehensive reassessment and subsequent reform of the Xinfang system, focusing particularly on its mechanisms and procedures for dispute resolution. Such reforms are not merely instrumental for the more robust safeguarding of farmers’ land rights, but also for enhancing the overall integrity and public trust in China’s legal and administrative frameworks.
Objective: To promote the development of China’s crop seed industry with high quality, guarantee food security and sustainable agricultural development, scientific design of the evaluation index system for high-quality development of the seed industry and conduct of metric analysis are the keys to promoting the revitalization of the seed industry and the construction of a strong agricultural country. Methods: This paper focused on the high-quality development of China’s crop seed industry as the main research object by combining previous research findings of studies based on the connotation of high-quality development of the crop seed industry and constructed the evaluation index system of high-quality development of China’s crop seed industry which covers five dimensions, namely, innovation-driven development, green and sustained development, coordinated and comprehensive development, opening-up and strengthened development, and share-and-promote development, The Entropy method, Dagum’s Gini coefficient, Kernel’s density estimation, and panel regression methods were used to comprehensively analyze the spatial and temporal evolution, regional differences, and driving factors of the level of high-quality development of the crop seed industry in 30 provinces (municipalities and autonomous regions) of China from 2011 to 2020. Conclusions: After systematic analysis, it was concluded that (1) the overall level of high-quality development in China’s crop seed industry has stabilized, and progress has been made. (2) The overall inter-regional differences among the four major regions showed a gradual upward trend, with the inter-regional differences serving as the primary source of the differences and the contribution rate of various inter-regional differences demonstrating an upward trend. (3) Innovation capacity, the cultural and educational level of rural residents, the development of rural infrastructure, national financial support, and market-oriented approach are important factors driving the high-quality development of the crop seed industry in Chinese provinces (districts and municipalities).
This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
Copyright © by EnPress Publisher. All rights reserved.