The management of Mediterranean mountains need to know whether or not the flora is adapted to respond to fire and, if so, through what mechanisms. Serpentine outcrops constitute particular ecosystems in the Mediterranean Basin, and plants need to make an additional adaptive effort. The objective of this study is to know the response to fire of the main members of the group of serpentine plants, which habit the Spanish Mediterranean ultramafic mountain, to help in their management. For this purpose, monitoring plots were established on a burned ultramafic outcrop, which was affected by fire in August 2012.They were located in the Mediterranean south of the Iberian Peninsula, Andalusia region. The dominant vegetation of this serpentine ecosystem had been studied previously to fire; it was a shrubland composed of endemic serpentinophytes (small shrubs and perennial herbs) included in Digitali laciniatae-Halimietum atriplicifolii plant association (Cisto-Lavanduletea class) in an opened pine forest. The post-fire response of the plants was studied in the stablished burned plots by field works through permanent 200 x 10 m transect methods, consisting on checking whether they were resprouters, seeders, both of them or if they showed no survival response. Additional information about fire related functional traits is provided for the studied taxa from other studies. Of the total of plants studied (23 taxa), 74% acted as resprouters, 30% as seeders, some of which also had the capacity to resprout (13%), and only 9% of the plants did not show any survival strategy. The presence of a resprouting burl was not high (17%), although serpentine small shrubs such as Bupleurum acutifolium and the generalist Teucrium haenseleri had this kind of organ. The herbaceous taxa Sanguisorba verrucosa, Galium boissieranum and Linum carratracense were seen to be resprouters and seeders. The serpentine obligated Ni-accumulator, Alyssum serpyllifolium subsp. malacitanum, did not show any survival strategy in the face of fire and therefore their populations need monitoring after fires. In the studied ecosystems no species had traits that would protect the aerial part of the plant against fire, although most of the species are capable of post-fire generation by below ground buds. Our results show that the ecosystem studied, composed of taxa with a high degree of endemism and some of them threatened, is predominantly adapted to survival after a fire, although their response capacity may be decreased by environmental factors.
As an important ecosystem type in the coastal zone, mangroves have important ecological functions, such as maintaining coastal biodiversity, preventing wind and consolidating the coast, promoting silt and building land. It is of great significance to understand the protected status of mangroves in the context of climate change and rapid urbanization. Based on the mangrove classification data from remote sensing interpretation, through vacancy analysis, the in-situ protection status of mangroves in China is analyzed. The results show that the total area of mangroves distributed in China is 264 km2 (excluding the statistical data of Hong Kong, Macao and Taiwan), of which 61.4% are protected in natural reserves. In terms of the main provinces where mangroves are distributed, the mangrove area distributed in Hainan Province is small but the protection proportion is high, while the mangrove area distributed in Guangxi and Guangdong Province is large but the proportion of protected areas is relatively low. Among the three mangrove types, Rhizophora apiculate-Xylocarpus granatum and Rhizophora stylosa-Bruguiera gymnorrhiza had high proportions (>90%) covered by reserves, but relatively small areas. In contrast, Kandelia candel-Aegiceras corniculatum-Avicennia marina had relatively low reserve coverage (52.6%), but a large area. The study puts forward the key areas of mangrove distribution outside the nature reserve, and suggests that they should be protected by delimiting ecological protection red lines.
Forest is the main carbon sink of terrestrial ecosystem. Due to the unique growth characteristics of plants, the response of their growth status and physiological activities to climate change will affect the carbon cycle process of forest ecosystem. Based on the local scale CO2 flux and temperature observation data recorded by the FLUXNET registration site and Harvard Forest FLUX observation tower from 2000 to 2012, combined with the phenological model, this paper analyzes the impact of temperature changes on CO2 flux in temperate forest ecosystems. The results show that: (1) the maximum NEE in 2000–2012 was 298.13 g·m-2·a-1, which occurred in 2010. Except in the 2010 and 2011, the annual NEE in other years was negative. (2) NEE, GPP, temperature and phenology models have good fitting effects (R2 > 0.8), which shows that the stable period of photosynthesis in temperate mixed forest ecosystem is mainly concentrated in summer, and vegetation growth is the dominant factor of carbon cycle in temperate mixed forest ecosystem. (3) The linear fitting results of the change time points of air temperature (maximum point, minimum point and 0 point date) and the change time points of NEE and GPP (maximum point, minimum point and 0 point date) show that there is a significant positive correlation between air temperature and CO2 flux (P < 0.01), and the change of air temperature affects the carbon cycle process of temperate mixed forest ecosystem.
The national park with Chinese characteristics is the highest level of protection of a kind of natural protection, its establishment marks the park will implement the strictest ecological protection means. It is of great value to construct the utilization system of national park resources under the new natural protected area system in the new era to avoid the misunderstanding of “ecological protection only” and explore how to carry out the sustainable utilization of resources in the reform of national park system and mechanism. According to the analytic hierarchy process (AHP) and Delphi method, the evaluation framework, indicators, reference standards and weights of resource utilization under the national park system were determined in combination with the requirements of constructing the protected natural area system and the total value of resource ecosystem services (including harvest value, existence value and future value). Based on the application research of Bawangling zone of Hainan Tropical Rainforest National Park, the optimal resource utilization system in the future was proposed, and two optimization strategies of ecological adjustment of resource utilization system and construction of suitable resource utilization system were put forward.
Forest fire, as a discontinuous ecological factor of forest, causes the changes of carbon storage and carbon distribution in forest ecosystem, and affects the process of forest succession and national carbon capacity. Taking the burned land with different forest fire interference intensity as the research object, using the comparison method of adjacent sample plots, and taking the combination of field investigation sampling and indoor test analysis as the main means, this paper studies the influence of different forest fire interference intensity on the carbon pool of forest ecosystem and the change and spatial distribution pattern of ecosystem carbon density, and discusses the influence mechanism of forest fire interference on ecosystem carbon density and distribution pattern. The results showed that forest fire disturbance reduced the carbon density of vegetation (P < 0.05). The carbon density of vegetation in the light, moderate and high forest fire disturbance sample plots were 67.88, 35.68 and 15.50 t∙hm-2, which decreased by 15.86%, 55.78% and 80.79% respectively compared with the control group. In the light, moderate and high forest fire disturbance sample plots, the carbon density of litter was 1.43, 0.94 and 0.81 t∙hm-2, which decreased by 28.14%, 52.76% and 59.30% respectively compared with the control group. The soil organic carbon density of the sample plots with different forest fire disturbance intensity is lower than that of the control group, and the reduction degree gradually decreases with the increase of soil profile depth. The soil organic carbon density of the sample plots with light, moderate and high forest fire disturbance is 103.30, 84.33 and 70.04 t∙hm-2 respectively, which is 11.670%, 27.899% and 40.11% lower than that of the control group respectively; the carbon density of forest ecosystem was 172.61, 120.95 and 86.35 t∙hm-2 after light, moderate and high forest fire disturbance, which decreased by 13.53%, 39.41% and 56.74% respectively compared with the control group; forest fire disturbance reduced the carbon density of eucalyptus forest, which showed a law of carbon density decreasing with the increase of forest fire disturbance intensity. Compared with the control group, the effect of light forest fire disturbance intensity on the carbon density of eucalyptus forest was not significant (P > 0.05), while the effect of moderate and high forest fire disturbance intensity on the carbon density of eucalyptus forest was significant (P < 0.05).
Ecological environment damage events will destroy or damage the balance between animal and plant habitats and ecosystems, and even pose a threat to China’s ecological security. However, at present, there are some problems in the identification and evaluation of forest ecosystem damage, such as imperfect evaluation system, insufficient quantitative evaluation methods, imperfect damage compensation management system, and lack of analysis of the overall damage of the interaction between human activities and forest ecosystem. Based on the damaged object, the system involves a total of four first-class indicators, including physical damage, mental damage, economic forest fruit loss, forest by-products loss, processing and manufacturing loss, forest tourism loss, scientific research literature and history loss, soil conservation loss, water conservation loss, wind prevention and sand fixation loss, carbon fixation and oxygen release loss, atmospheric purification loss. There are 14 secondary indicators of emergency treatment fee and investigation and evaluation fee, as well as 22 tertiary indicators, and the value quantification method of each indicator is clarified by using market value method, alternative cost method, shadow engineering method, recovery cost method and other methods. The article also discusses the management system of forest ecosystem damage from the two aspects of forestry technology department and judicial administration department. The purpose is to provide reference for the quantification and standardization of forest ecosystem damage assessment technology and the improvement of management system.
Copyright © by EnPress Publisher. All rights reserved.