The increasing epileptic electricity supply, mainly in the residential areas of Nigerian cities, has been linked to the incorrect knowledge of the numerous socio-economic and physical indices that influence household electricity usage. Most of the seemingly identified explanatory factors were done at macro level which does not give a clear estimate of this electricity demand. The thrust of the study is to analyse empirically the household electricity determinants in Nigerian cities with a view to evolving a more informed and sustainable energy policy decision. Multistage area cluster sampling method was adopted in the study where 769 copies of structured questionnaire were distributed to electricity users of prepaid meters in five major Nigerian cities. The research hypothesis was tested using the multiple linear regression statistical tool. The result revealed that nine variables which include age (r = 0.05, p-value: 0.05), household income (r = 0.00, p-value: 0.05), number of hours that people stay outside the house (r = 0.043, p-value: 0.05), number of teenagers at home, (r = 0.006, p-value: 0.01) number of electrical appliances (r = 0.016, p-value: 0.01), type of house (r = 0.012, p-value: 0.01), hours that the electrical appliances are used (r = 0.043, p-value: 0.05), weather condition, (r = 0.011, p-value: 0.05) and the location of the building (r = 0.045, p-value: 0.05) were significant in determining the household electricity consumption. Policies based on the findings will give energy and urban planners an empirical basis for accurate and robust forecasting of the determinants that influence household electricity consumption in Nigeria that is devoid of any speculation or unfounded predictions.
The increasing demand for electricity and the need to reduce carbon emissions have made optimizing energy usage and promoting sustainability critical in the modern economy. This research paper explores the design and implementation of an Intelligent-Electricity Consumption and Billing Information System (IEBCIS), focusing on its role in addressing electricity sustainability challenges. Using the Design Science Research (DSR) methodology, the system’s architecture collects, analyses, and visualizes electricity usage data, providing users with valuable insights into their consumption patterns. The research involved developing and validating the IEBCIS prototype, with results demonstrating enhanced real-time monitoring, load shedding schedules, and billing information. These results were validated through user testing and feedback, contributing to the scientific knowledge of intelligent energy management systems. The contributions of this research include the development of a framework for intelligent energy management and the integration of data-driven insights to optimize electricity consumption, reduce costs, and promote sustainable energy use. This research was conducted over a time scope of two years (24 months) and entails design, development, pilot test implementation and validation phases.
Electricity consumption in Europe has risen significantly in recent years, with households being the largest consumers of final electricity. Managing and reducing residential power consumption is critical for achieving efficient and sustainable energy management, conserving financial resources, and mitigating environmental effects. Many studies have used statistical models such as linear, multinomial, ridge, polynomial, and LASSO regression to examine and understand the determinants of residential energy consumption. However, these models are limited to capturing only direct effects among the determinants of household energy consumption. This study addresses these limitations by applying a path analysis model that captures the direct and indirect effects. Numerical and theoretical comparisons that demonstrate its advantages and efficiency are also given. The results show that Sub-metering components associated with specific uses, like cooking or water heating, have significant indirect impacts on global intensity through active power and that the voltage affects negatively the global power (active and reactive) due to the physical and behavioral mechanisms. Our findings provide an in-depth understanding of household electricity power consumption. This will improve forecasting and enable real-time energy management tools, extending to the design of precise energy efficiency policies to achieve SDG 7’s objectives.
Copyright © by EnPress Publisher. All rights reserved.