The quality of indoor classroom conditions influences the well-being of its occupants, students and teachers. Especially the temperature, outside acceptable limits, can increase the risk of discomfort, illness, stress behaviors and cognitive processes. Assuming the importance of this, in this quantitative observational study, we investigated the relationship between two environmental variables, temperature and humidity, and students’ basic emotions. Data were collected over four weeks in a secondary school in Spain, with environmental variables recorded every 10 minutes using a monitoring kit installed in the classroom, and students’ emotions categorized using Emotion Recognition Technology (ERT). The results suggest that high recorded temperatures and humidity levels are associated with emotional responses among students. While linear regression models indicate that temperature and humidity may influence students’ emotional experiences in the classroom, the explanatory power of these models may be limited, suggesting that other factors could contribute to the observed variability in emotions. The implications and limitations of these findings for classroom conditions and student emotional well-being are discussed. Recognizing the influence of environmental conditions and monitoring them is a step toward establishing smart classrooms.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
This research presents an in-depth examination of the emotional effects of synchronous hybrid education on undergraduate university students at a pioneering private institution in educational innovation. The study had encompassed all courses that were delivered in a synchronous hybrid format, covering 16 courses and involving 241 students. Each student had been observed and recorded on two separate class sessions, with each recording lasting approximately 30 min. This comprehensive data collection had resulted in 409 recordings, each approximately 30 min in duration, translating to nearly an hour of observation per student across the classes, totaling close to 205 h of recordings. These recordings were subsequently processed using neuroscience software tools for advanced statistical analysis, effectively serving as a comprehensive survey of courses within this modality. The primary focus of the research was on the emotions experienced during both face-to-face and online classes and their subsequent influence on student behavior and well-being. The findings reveal higher emotional time ratios for positive emotions such as joy and surprise in face-to-face students. Notably, both groups exhibited comparable ratios for negative emotions like anger and sadness. The research underscores the emotional advantages of face-to-face interactions, which elicit stronger emotions, in contrast to online students who often feel detached and isolated.
The potential role of self-regulated learning as mediator has been deeply investigated by researchers in recent years. There is limited systematic literature review being done to investigate the role of self-regulated learning as mediator in the students’ academic learning. Therefore, searching studies in the databases WOS (Web of Science), SCOPUS, APA (American Psychological Association) PsycInfo, and ERIC (Education Resources Information Center), the present study conducted a systematic literature review on 32 studies published between 2015 and 2024 to summarize what kind of psychological factors influence students’ academic performance through self-regulated learning and assess the potential mediating role of self-regulated learning in this process. The results show that self-efficacy, emotions and motivation are significant predictors of academic achievement and self-regulated learning act as an important mediator in this relationship. An important implication was obtained that researchers can probe into the influence of specific dimensions of self-efficacy on learning performance through self-regulated learning and the influence of positive emotions such as resilience on learning outcomes with self-regulated learning as mediator.
Temperament education encompasses a wide range of concepts, focusing particularly on emotions within the context of Chinese culture. This article examines emotions through three key aspects: basic concepts, performance analysis, and intentional management. Understanding the basic concepts of emotions is essential. In Chinese culture, emotions are seen as complex experiences that influence individual behavior and social interactions. The seven emotions and six desires highlight the cultural significance of emotions in shaping human experience and communal harmony. Next, emotion performance analysis explores how emotions manifest in different situations. Traditional Chinese philosophy emphasizes the connection between emotions and moral decisions, underscoring the importance of emotional expression for balance and harmony. By analyzing normal stress responses and their variations, individuals can better understand their emotional patterns and triggers, affecting their relationships and decision-making. Lastly, intentional emotion management involves actively shaping emotional responses to achieve desired outcomes. Techniques like mindfulness and reflection can cultivate emotional awareness and control. This holistic approach enables individuals to navigate challenges more effectively, fostering resilience and well-being, ultimately leading to personal growth and enriched interpersonal relationships. By understanding, analyzing, and managing emotions, one can create a more harmonious and fulfilling life. The article establishes an inner clue of temperament education in the conclusion part to make it more vivid and comprehensive. The limitation of the article is much more theoretical than experimental. That’s the future extension of the research expected.
This study examines aggressive behavior among adolescents in school settings, focusing on its associations with mental health dimensions such as dysfunctional negative emotions and anxiety. A total of 403 adolescents (234 girls and 169 boys) aged 12 and 13 years participated in the study. Self-report questionnaires assessed aggressive tendencies and mental health symptoms, while demographic variables such as age and gender were also collected. Data analysis revealed a non-normal distribution, as determined by the Kolmogorov-Smirnov and Shapiro-Wilk tests. Consequently, non-parametric statistical methods were employed, including the Spearman correlation coefficient to explore relationships between variables and the Mann-Whitney U test to analyze gender differences. The results demonstrated significant positive correlations between aggressive behavior and dysfunctional negative emotions (r = 0.191, p < 0.01) and between aggression and anxiety (r = 0.275, p < 0.01). Additionally, gender differences emerged, with females reporting higher levels of mental health symptoms than males (p < 0.05). These findings highlight the complex relationship between mental health challenges and aggression, emphasizing the significant roles of gender and emotional regulation in shaping these dynamics. The study calls for the development of tailored psychological interventions that not only address aggressive behaviors but also consider the unique mental health needs and emotional profiles of adolescents, ensuring a more personalized and effective approach to support their well-being.
Copyright © by EnPress Publisher. All rights reserved.