Sustainability and green campus initiatives are widely examined in developed countries but less attention has been paid in developing countries such as Pakistan. Therefore, this study intends to examine the links between sustainability dimensions and green campus initiatives by mediating role of teachers and students’ involvement. Green campus or sustainable campus or environment friendly campus is based on the principles of environmental sustainability, incorporating social, and economic and environmental dimensions. Questionnaire for assessment of sustainability was adopted and 529 responses were received from the faculty, management and servicing staff of the seven Mountain Universities of the Gilgit Baltistan and Azad Jammu and Kashmir in Northern Pakistan. Partial Least Square Structural Equation Modeling (PL-SEM) was used to analyse the data. The results indicated that energy conservation, water conservation, green transport, sustainable waste management have enhanced campus green initiatives. Teachers and students’ involvement partially mediate the relationship between green transport strategies, sustainable waste management and green campuses initiatives. While on another hand, teachers and students’ involvement have not mediated the links between energy conservation, water conservation and green campus initiatives. The study contributes to theory building in the area of green and environment friendly campus initiatives by enriching the understanding of the processes carrying the effect of sustainability dimensions and both teachers and students’ involvement.
The need for global energy conservation has become more urgent because of the negative effects of excessive energy use, such as higher fuel consumption, greater environmental pollution, and depletion of the ozone layer. There has been a significant increase in the demand for central and high-capacity household air conditioning systems in Muscat in recent years. The need for this is influenced by factors such as arid climate, increasing temperatures, air pollution, and population increase. As a result, there has been a significant increase in electricity use, putting a strain on power resources. To tackle this difficulty, the incorporation of solar collectors as supplementary thermal compressors in air conditioning systems offers a chance to utilise renewable energy sources. The objective of this hybrid technique is to enhance the effectiveness of cooling systems, hence minimising the need for electricity and lowering the release of environmental pollutants.
To investigate the effect of the location of vacuum insulation panels on the thermal insulation performance of marine reefer containers, a 20ft mechanical refrigeration reefer container was employed in this paper, and the physical and mathematical models of three kinds of envelopes composed of vacuum insulation panels (VIP) and polyurethane foam (PU) were numerically established. The heat transfer of three types of envelopes under unsteady conditions was simulated. In order to be able to analyze theoretically, the Rasch transform is used to analyze the thermal inertia magnitude by calculating the thermal transfer response frequency and the thermal transfer response coefficient for each model, and the results are compared with the simulation results. The results implied that the insulation performance of VIP external insulation is the best. The delay times of each model obtained from the simulation results are 0.81 h, 1.45 h, 2.03 h, and 2.24 h, while the attenuation ratios are 8.93, 20.39, 20.62, and 21.78, respectively; the delay times calculated from the theoretical analysis are 0.78 h, 1.43 h, 1.99 h, and 2.20 h, respectively; and the attenuation ratios are 8.84, 20.31, 20.55, and 21.72, respectively. The carbon reduction effect of VIP external insulation is also the best. The most considerable carbon reduction is 3.65894 kg less than the traditional PU structure within 24 h. The research has a guiding significance for the research and progress of the new generation of energy-saving reefer containers and the insulation design of the envelope of refrigerated transportation equipment.
Copyright © by EnPress Publisher. All rights reserved.