The initiation of tapering, sparked by heightened inflation in the United States, reverberates across global markets, with notable implications for Indonesia. This study delved into the nuanced impact of tapering on Sharia-compliant stocks in both Indonesia and Malaysia. The rationale behind selecting Sharia stocks for analysis lies in their composition, featuring companies boasting low debt-to-asset and equity ratios, thereby positing robust resilience in the face of the Federal Reserve’s implementation of tapering. Employing a time series dataset with a weekly sampling period spanning from January to September 2022, the analysis adopted the Error Correction Model (ECM) within a multiple regression framework to circumvent potential spurious regression pitfalls. The results of this study indicate that the impact of tapering off policy in Indonesia has a positive impact in the short term and long term, while in Malaysia it tends to be insignificant in the short term and has a positive impact from the US 10-year bond yield variable and a negative impact from US 1-Year Treasury Bills. This result is interesting because it differs from the general theory. The causal factors include the agility of the Indonesian central bank in maintaining the benchmark interest rate spread with the Fed, the economic stability of both countries, and the increasing trend of coal, with Indonesia being one of the largest producers of the commodity. Investors, in navigating these intricate dynamics, may find strategic insights derived from this research invaluable for shaping their investment decisions. while government policymakers may use them as a reference for shaping policies related to Sharia stock investments, including the incorporation of artificial intelligence.
Using time series data covering the years 1980 to 2020, this study examines the effects of government spending, population growth, and economic expansion on unemployment in the context of South Africa. The study’s variables include government spending, population growth, and economic growth as independent factors, and unemployment as the dependent variable. To ascertain the study’s outcomes, basic descriptive statistics, the Vector Error Correction Model (VECM), the Johansen Cointegration Procedures, the Augmented Dicky-Fuller Test (ADF), and diagnostic tests were used. Since all the variables are stationary at the first difference, the ADF results show that there isn’t a unit root issue. According to the Johansen cointegration estimation, there is a long-term relationship amongst the variables. Hence the choice of VECM to estimate the outcomes. Our results suggests that a rise in government spending will result in a rise in South Africa’s unemployment rate. The findings also suggest that there is a negative correlation between unemployment and population growth. This implies that as the overall population grows, unemployment will decline. Additionally, the findings suggest that unemployment and economic growth in South Africa are positively correlated. This contradicts a number of economic theories, including Keynesian and Okuns Law, which hold that unemployment and economic growth are inversely correlated.
The proportion of national logistics costs to Gross Domestic Product (NLC/GDP) serve as a valuable indicator for estimating a country’s overall macro-level logistics costs. In some developing nations, policies aimed at reducing the NLC/GDP ratio have been elevated to the national agenda. Nevertheless, there is a paucity of research examining the variables that can determine this ratio. The purpose of this paper is to offer a scientific approach for investigating the primary determinants of the NLC/GDP and to advice policy for the reduction of macro-level logistics costs. This paper presents a systematic framework for identifying the essential criteria for lowering the NLC/GDP score and employs co-integration analysis and error correction models to evaluate the impact of industrial structure, logistics commodity value, and logistics supply scale on NLC/GDP using time series data from 1991 to 2022 in China. The findings suggest that the industrial structure is the primary factor influencing logistics demand and a significant determinant of the value of NLC/GDP. Whether assessing long-term or short-term effects, the industrial structure has a substantial impact on NLC/GDP compared to logistics supply scale and logistics commodity value. The research offers two policy implications: firstly, the goals of reducing NLC/GDP and boosting the logistics industry’s GDP are inherently incompatible; it is not feasible to simultaneously enhance the logistics industry’s GDP and decrease the macro logistics cost. Secondly, if China aims to lower its macro-level logistics costs, it must make corresponding adjustments to its industrial structure.
This paper investigates the elements affecting dividend yield in developing Southeast Asian countries—more specifically, Thailand, Malaysia, and Singapore. Examined here are the roles of financial information including debt to equity ratio, free cashflows, property, plant, and equipment (PPE) and total sales with controlling factors of size, institutional ownership, and firm age using both short-run and long-run analytical frameworks including the Error Correction Model and Engle and Granger’s approach. The results reveal different trends in the three nations. Higher debt and free cashflows lower dividend yield in Thailand; institutional shareholders benefit from maintaining greater dividend payouts. Aging companies in Malaysia are more likely to pay more dividends while rising revenues are linked to smaller short-term payouts. Leveraged and asset-heavy companies are more likely to keep paying dividends in Singapore. These discoveries have important ramifications for investors and business management trying to maximize dividend policies and improve shareholder value in developing economies.
Copyright © by EnPress Publisher. All rights reserved.