Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
Onion (Allium cepa L.) is one of the important vegetables in Egypt. The study was conducted in the vegetable field to study the effect of different rates of phosphorus fertilizers and foliar application of Nano-Boron, Chitosan, and Naphthalene Acidic Acid (NAA) on growth and seed productivity of Onion plant (Allium cepa L., cv. Giza 6 Mohassan). The experiments were carried out in a split-plot design with three replicates. The main plot contains 3 rates of phosphorus treatments (30, 45 and 60 kg P2O5/feddan), Subplot includes foliar application of Nano-Boron, Nano-Chitosan and Naphthalene Acidic Acid (NAA) at a concentration of 50 ppm for each and sprayed at three times (50, 65 and 80 days after transplanting). Increasing the phosphorus fertilizers rate to 60 kg P2O5/fed significantly affects the growth and seed production of the Onion plant. Foliar application of nano-boron at 50 ppm concentration gave maximum values of onion seed yield in both seasons. Results stated that the correlation between yield and yield contributing characters over two years was highly significant. It could be recommended that P application at a rate of 60 kg P2O5 and sprayed onion plants at 50 ppm nano-boron three times (at 50, 65, and 80 days from transplanting) gave the highest seed yield of onion plants. Moreover, the maximum increments of inflorescence diameter (94.4%) were recorded to nano-boron foliar spray (60 p × nB) compared to the other treatments in both seasons.
Copyright © by EnPress Publisher. All rights reserved.