Heavy metal contaminated soil due to industrial, agricultural and municipal activities is becoming a global concern. Heavy metals severely affect plants, animals and human health. A suitable technology is necessary for heavy metals removal because it cannot self-decomposition as organic compounds. Among the various technologies surveyed, phytoremediation is one of the safest, most innovative, environmental friendly and cost-effective approach for heavy metals removal. Nevertheless, traditional phytoremediation practices pose some limitations such as long processing time, unstable treatment efficiency and limited application at large scale. In many methods proposed to improve phytoremediation, integrated phytoremediation has been studied in the recent years. Integrated phytoremediation use chelating agents and phytohormones to enhance phytoremediation. This is an environmentally safe, saving time and relative high effective method. Results showed that the association of a metal ion and a chelating agent to form chelates helps to maintain the availability of metals in the soil for the uptake of plants. Phytohormones supply nutrients for the soil to support vegetable growth. Therefore, integrated phytoremediation is a promising solution to overcome the disadvantages of conventional phytoremediation. It should be taken commercialization and need more applied projects in this field to demonstrate and clarify the real potential of this technology. In view of above, this manuscript reviews the mechanism and the efficiency of integrated phytoremediation for heavy metals in contaminated soil to give an overview of this technology.
The MENA region, known for its significant oil and gas production, has been widely acknowledged for its reliance on fossil fuels. The dependence on fossil fuels has led to significant environmental pollution. Therefore, the shift towards a more environmentally friendly and enduring future is crucial. Thus, the current study tries to investigate the effect of green technology innovations on green growth in MENA region. Specifically, we examine whether the effect of green technology innovations on green growth depend on the threshold level of income. To this end, a panel threshold model is estimated for a sample of 10 MENA countries over the period 1998–2022. Our main findings show that only countries with income level beyond the threshold can benefit significantly from green technology innovations in term of green growth. Nevertheless, our findings indicate a substantial and adverse impact of green technology innovation on countries where income levels fall below the specified threshold.
In the face of growing urban problems such as overcrowding and pollution, we urgently need innovative ideas to build smarter and greener cities. Current urban development strategies often fail to address these challenges, revealing a significant research gap in integrating advanced technologies. This study addresses these gaps by integrating green technologies and artificial intelligence (AI), studying its impact on achieving smart and sustainable habitats and identifying barriers to effective use of these technologies, considering local variations in infrastructural, cultural, and economic contexts. By analyzing how AI and green technologies can be combined, this study aims to provide a vision that can be used to improve urban development planning. The results emphasize the significance of environmental responsibility and technological innovation in the development of sustainable urban environments and provide practical recommendations for improving the overall quality of life in cities through planning and urban planning.
The purpose of this study is to analyze issues related to the use of green technology and to provide a theoretical basis for how the application of green technology in agriculture can reduce inequality. Additionally, the study aims to explore policy alternatives based on the analysis of inequality reduction issues through farmer surveys. For this purpose, this study used survey data to analyze farmers’ perceptions, acceptance status, willingness to accept green technology, and perceptions of inequality. The quantitative analysis was performed to analyze the relationship between the acceptance of green technology and perceptions of inequality. The results confirmed that access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions are major factors. In particular, the higher the satisfaction with policies regarding the introduction of green technology, the lower the perception of inequality. Specifically, the acceptance of green technology showed a significant positive correlation with access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions, while perceptions of inequality showed a significant negative correlation with policy satisfaction. In conclusion, green technology in agriculture is vital for reducing climate change damage and inequality. However, targeted policy support for small-scale farmers is essential for successful adoption. This study provides policy implications related to the application of green technology in the agricultural sector, which can promote sustainable agricultural development.
The holding of soccer events has an important impact on modern urban activities, which is conducive to the economic development, social harmony, cultural integration and regional integration of cities. However, massive energy is consumed during the event preparation and infrastructure construction, resulting in an increase in the city’s carbon emissions. For the sustainable development of cities, it is important to explore the theoretical mechanism and practical effectiveness of the relationship between soccer events and urban carbon emissions, and to adopt appropriate policy management measures to control carbon emissions of soccer events. With the development of green technology, digitalization, and public transportation, the preparation and management methods of soccer events are diversified, and the possibility of carbon reduction of the event is further increased. This paper selects 17 cities in China from 2011 to 2019 and explores the complex impact of soccer events on urban carbon emissions by using green technology innovation, digitalization level and public transportation as threshold variables. The results show that: (1) Hosting soccer events increases carbon emissions with an impact coefficient of 0.021; (2) There is a negative single-threshold effect of green innovation technology, digitalization level and public transportation on the impact of soccer events on carbon emissions, with the impact coefficients of soccer events decreasing by 0.008, 0.01 and 0.06, respectively, when the threshold variable crosses the threshold. These findings will enhance the attention of city managers to the management of carbon emissions from soccer events and provide guidance for reducing carbon emissions from soccer events through green technology innovation, digital means and optimization of public transportation.
More and more scholars are paying attention to the economic and environmental responsibilities undertaken by firms. Firm sustainability has become a hot topic in current research. This article aims to analyze the impact of various dimensions of digital green technology innovation on firm sustainability. The “digital green technology innovation” in this research is a new variable explored based on previous research, and the five dimensions of the variable are created based on the POLE theory. This research uses authoritative Chinese databases to collect data on various dimensions of digital green technology innovation and sustainable development of companies, and uses a fixed effects model for regression analysis. The results indicate that the implementation of various dimensions of digital green technology innovation will promote the firm sustainability. Moreover, in firms with strong profitability, this performance is significantly better than in those with weak profitability.
Copyright © by EnPress Publisher. All rights reserved.