Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
This research investigates the determinants of digital transformation among Vietnamese logistics service providers (LSPs). Employing the Technological-Organizational-Environmental framework and Resource Fit theory, the study identifies key factors influencing this process across different three stages: digitization, digitalization, digital transformation. Data from in-depth interviews with industry experts and a survey of 390 LSPs were analyzed using covariance-based structural equation modeling (CB-SEM). The findings reveal that the factors influencing the digital transformation of Vietnamese LSPs evolve across different stages. In the initial phase, information technology infrastructure, financial resources, employee capabilities, external pressures, and support services are key determinants. As digitalization progresses, leadership emerges as a crucial factor alongside the existing ones. In the final stage, the impact of these factors persists, with leadership and employee capabilities becoming increasingly important.
Copyright © by EnPress Publisher. All rights reserved.