Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
This study provides an evaluation of the environmental impact and economic benefits associated with the disposal of mango waste in Thailand, utilizing the methodologies of life cycle assessment (LCA) and cost-benefit analysis (CBA) in accordance with internationally recognized standards such as ISO 14046 and ISO 14067. The study aimed to assess the environmental impact of mango production in Thailand, with a specific focus on its contribution to global warming. This was achieved through the application of a life cycle assessment methodology, which enabled the determination of the cradle-to-grave environmental impact, including the estimation of the mango production’s global warming potential (GWP). Based on the findings of the feasibility analysis, mango production is identified as a novel opportunity for mango farmers and environmentally conscious consumers. This is due to the fact that the production of mangoes of the highest quality is associated with a carbon footprint and other environmental considerations. Based on the life cycle assessment conducted on conventional mangoes, taking into account greenhouse gas (GHG) emissions, it has been determined that the disposal of 1 kg of mango waste per 1 rai through landfilling results in an annual emission of 8.669 tons of carbon. This conclusion is based on comprehensive data collected throughout the entire life cycle of the mangoes. Based on the available data, it can be observed that the quantity of gas released through the landfilling process of mango waste exhibits an annual increase in the absence of any intervening measures. The cost benefit analysis conducted on the life cycle assessment (LCA) of traditional mango waste has demonstrated that the potential benefits derived from its utilization are numerous. The utilization of the life cycle assessment (LCA) methodology and the adoption of a sustainable business model exemplify the potential for developing novel eco-sustainable products derived from mango waste in forthcoming time.
Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages.
This study’s primary objective is to determine the financial repercussions, including expenses, profits, and losses, that certain stakeholders in the Tuong-mango value chain face at various distribution stages. This was achieved through the utilisation of stakeholders cost-benefit value chain analysis. These individuals collectively contributed 849 sample observations to the dataset including 732 farmers, 10 cooperative, 32 collectors, 25 wholesalers, 30 retailers, 12 exporters and processors, and 08 grocery stores/fruit. The robust financial performance of the Tuong-mango value chain is attributable to its integrated economic efficiency, as evidenced by its over USD 1 billion in revenue and USD 98.2 million in net income. The marketing channels, specifically channels 1, 2, and 3, generate a total of USD 906.1 million in revenue, yielding a net profit of USD 81.9 million. The combined sales from domestic marketing channels 4 and 5 total USD 160 million, yielding a net profit of USD 16.2 million. The findings indicate that due to their limited scope and suboptimal grade 1, farmers are the most vulnerable link in the supply chain. This study proposes three strategies for augmenting quality, fostering technological advancement, and facilitating the spread of benefits. This study’s findings contribute to the existing literature on value chain analysis as it pertains to various tropical fruits and vegetables. The study provides empirical evidence supporting the utility of the value chain method in policy formulation.
Purpose: The aim of the study is to apply policy analysis matrix (PAM) to identify international competitiveness of marketing channels and policy impacts of government on each marketing channels. Methodology: Policy analysis matrix is employed to evaluate influences of macroeconomic policy on the Tuong-mango value chain. The study investigated 213 sampling observation of eight main actors in chain. Findings: The findings indicate that although domestic channel 4 exhibits competitiveness (Private cost ratio (PRC) < 1), channels 1, 2, and 3 possess both comparative and competitive advantages (PRC < 1, Domestic Resource Cost (DRC) < 1, and social benefit-cost (SBC) > 1). The government’s strategy on production protection, referred to as Nominal protection coefficient on tradable output (NPCO) 0.16, together with the plan for enhancing added value, denoted as Effective protection coefficient (EPC) 0.14 and Subsidy ratio to producers (SRP) −0.18, place a significant emphasis on the first export channel. The government’s subsidy plan grants preferential treatment to Channel 4 in terms of the pricing of commercially available products, with a Nominal protection coefficient on tradable input (NPCI) value of 0.75. A value-added strategy is implemented for export channels 2 and 3, which have EPCs of 0.76 and 0.85, respectively. Policy implications: If the tradable cost is modified by 20%, there will be a change in the ratio of DRC, SBC, EPC, and SRP. While the EPC does not see a 20% reduction in domestic prices, the DRC and SBC do benefit from this cost reduction. A reduction of 20% in the local cost, coupled with a corresponding rise of 20% in the Free on Board (FOB) price, would result in a significant elevation of the SRP for export channels 1, 2, and 3. Conclusion: This is as evidence for the combination of quantitative is a dynamic tool in the policymaking process to ensure targets, constrictions, and consistent policies for agricultural fields. This permits policies to be changed in steps with an alteration in the economy and priorities set up for the tropical fruits and vegetables field.
The main objective of this study was comparative advantages analysis at social price of Num-mango in the export channels. The examination of the domestic resource cost per shadow exchange rate (DRC/SER) ratio provides insights into the comparative advantage of the trading system in the Num-mango industry. A comprehensive study was conducted, with a total of 317 observations, with a specific emphasis on the significant individuals in Vinh Long, Vietnam. The comparative advantage of the Num-mango commerce system was inferred from a DRC/SER ratio below one, which may be attributed to the existence of two distinct export channels. The DRC/SER in export channel 1 exhibited values of 0.55, 0.67, and 0.53 over the three seasons. In season 1, export channel 2 had a score of 0.42, which then was 0.79 in season 2. The value of export channel 2 had a consistent upward trend during season 3, reaching its highest point of 0.3. It is recommended that regulators and governments provide export-focused incentives that prioritize the maximum comparative advantage. This study examines the concept of comparative advantage within export supply chains, specifically in relation to a diverse selection of tropical fruits and vegetables. Furthermore, it provides empirical evidence that supports the applicability and reliability of the Ricardian model.
Copyright © by EnPress Publisher. All rights reserved.