Potassium dihydrogen phosphate, KH2PO4 (KDP) crystal is an excellent electro-optical nonlinear optical crystal with large electro-optical nonlinear coefficient, high laser damage threshold, and laser frequency doubling effect, electro-optical effect , Piezoelectric effects and other special features, widely used in inertial confinement fusion engineering (ICF) and electro-optical switching devices. Therefore, its growth mechanism, growth process and performance have been systematically studied. In the process of KDP crystal growth, it is found that the stability of the growth solution is an important factor affecting the quality of crystal growth. Therefore, in recent years, more and more research on the stability of the solution, such as the study of ph, doping, supersaturation, overheating time on the stability of the solution. Among them, the research on the doping is mostly reported, and the research on this aspect is mainly focused on two aspects. On the one hand, it is the study of the stability of the solution under doping, and the other is the effect of doping on the optical quality of the crystal. In fact, the stability of the growth solution and the quality of crystal growth is directly related to the quality, but the existing research to isolate the two researches. Therefore, the experiment will be carried out in the case of double-doped KDP solution stability, KDP crystal growth and crystal optical quality and other experiments, and in-depth analysis of the impact of solution stability and crystal optical quality of the reasons, while the solution stability and The relationship between the optical quality of the crystal is briefly analyzed.
This research study explores the addition of chromium (Cr6+) ions as a nucleating agent in the alumino-silicate-glass (ASG) system (i.e., Al2O3-SiO2-MgO-B2O3-K2O-F). The important feature of this study is the induction of nucleation/crystallization in the base glass matrix on addition of Cr6+ content under annealing heat treatment (600 ± 10 °C) only. The melt-quenched glass is found to be amorphous, which in the presence of Cr6+ ions became crystalline with a predominant crystalline phase, Spinel (MgCr2O4). Microstructural experiment revealed the development of 200–500 nm crystallite particles in Cr6+-doped glass-ceramic matrix, and such type microstructure governed the mechanical properties. The machinability of the Cr-doped glass-ceramic was thereby higher compared to base alumino-silicate glass (ASG). From the nano-indentation experiment, the Young’s modulus was estimated 25(±10) GPa for base glass and increased to 894(±21) GPa for Cr-doped glass ceramics. Similarly, the microhardness for the base glass was 0.6(±0.5) GPa (nano-indentation measurements) and 3.63(±0.18) GPa (micro-indentation measurements). And that found increased to 8.4(±2.3) (nano-indentation measurements) and 3.94(±0.20) GPa (micro-indentation measurements) for Cr-containing glass ceramic.
Copyright © by EnPress Publisher. All rights reserved.