Based on the characteristics of liquid lens sparse aperture imaging, a radiative multiplet array structure is proposed; a simplified model of sparse aperture imaging is given, and the analytical expression of the modulation transfer function is derived from the optical pupil function of the multiplet array structure; the specific distribution form of this multiplet array structure is given, and the structure parameters are approximated by the dimensionless method; the two types of radiative multiplet array structures are discussed, and the filling factor, redundancy, modulation transfer function and other characteristic parameters are calculated. The physical phenomena exhibited by the parametric scan are discussed, and the structural features and imaging characteristics of these two arrays are compared. The results show that the type-II structure with larger actual equivalent aperture and actual cutoff frequency and lower redundancy is selected when the average modulation transfer function and the IF characteristics of the modulation transfer function of the two structures are close to each other; the type-II structure has certain advantages in imaging; the conclusion is suitable for arbitrary enclosing circle size because the liquid lens-based multiplet array structure adopts dimensionless approximation parameters; compared with the composite toroidal structure, the radiative multiplet mirror structure has a larger actual cut-off frequency and actual equivalent aperture when the filling factor is the same.
ZrO2 thin film samples were produced by the sol-gel dip coating method. Four different absorbed dose levels (such as ~ 0.4, 0.7, 1.2 and 2.7 Gray-Gy) were applied to ZrO2 thin films. Hence, the absorbed dose of ZrO2 thin film was examined as physical dose quantity representing the mean energy imparted to the thin film per unit mass by gamma radiation. Modification of the grain size was performed sensitively by the application of the absorbed dose to the ZrO2 thin film. Therefore the grain size reached from ~50 nm to 87 nm at the irradiated ZrO2 thin film. The relationship of the grain size, the contact angle, and the refractive index of the irradiated ZrO2 thin film was investigated as being an important technical concern. The irradiation process was performed in a hot cell by using a certified solid gamma ray source with 0.018021 Ci as an alternative technique to minimize the utilization of extra toxicological chemical solution. Antireflection and hydrophilic properties of the irradiated ZrO2 thin film were slightly improved by the modification of the grain size. The details on the optical and structural properties of the ZrO2 thin film were examined to obtain the optimum high refractive index, self-cleaning and anti-reflective properties.
In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
A fresh interest has been accorded to metal iodides due to their fascinating physicochemical properties such as high ionic conductivity, variable optical properties, and high thermal stabilities in making micro and macro devices. Breakthroughs in cathodic preparation and metallization of metal iodides revealed new opportunities for using these compounds in various fields, especially in energy conversion and materials with luminescent and sensory properties. In energy storage metal iodides are being looked at due to their potential to enhance battery performance, in optoelectronics the property of the metal iodides is available to create efficient LEDs and solar cells. Further, their application in sensing devices, especially in environmental and medical monitoring has been quite mentioned due to their response towards environmental changes such as heat or light. Nevertheless, some challenges are still in question, including material stability, scale-up opportunities, and compatibility with other technologies. This work highlights the groundbreaking potential of metal iodide-based nanomaterials, emphasizing their transformative role in innovation and their promise for future advancements.
In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
Copyright © by EnPress Publisher. All rights reserved.