Scholars widely agree that modular technologies can significantly improve environmental sustainability compared to traditional building methods. There has been considerable debate about the viability of replacing traditional cast-in-place structures with modular construction projects. The primary purpose of this study is to determine the feasibility of using modular technology for construction projects in island areas. Thus, it is necessary to investigate the potential problems and suitable solutions associated with modular building project implementation. This study is accomplished through the use of qualitative and quantitative methods. It systematically examines desk research based on the wide academic literature and real case studies, collating secondary data from government files, news articles, professional blogs, and interviews. This research identifies several important barriers to the use of modular construction projects. Among the issues are the complexity of stakeholder engagement, limited practical skills and construction methodologies, and a scarcity of manufacturing capacity specialised for modular components. Fortunately, these unresolved challenges can be mitigated through fiscal incentives and governmental regulations, induction training programmes, efficient management strategies, and adaptive governance approaches. As a result, the findings support the feasibility of starting and advancing modular building initiatives in island areas. Project developers will likely be more willing to embrace and commit resources to initiate modular building projects. Additional studies can be undertaken to acquire the most recent first-hand data for detailed validation.
This study sought an innovative quality management framework for Chinese Prefabricated Buildings (PB) projects. The framework combines TQM, QSP, Reconstruction Engineering, Six Sigma (6Σ), Quality Cost Management, and Quality Diagnosis Theories. A quantitative assessment of a representative sample of Chinese PB projects and advanced statistical analysis using Structural Equation Modeling supported the framework, indicating an excellent model fit (CFI = 0.92, TLI = 0.90, RMSEA = 0.06). The study significantly advances quality management and industrialized building techniques, but it also emphasizes the necessity for ongoing research, innovation, and information exchange to address the changing problems and opportunities in this dynamic area. In addition, this study’s findings and recommendations can help construction stakeholders improve quality performance, reduce construction workload and cost, minimize defects, boost customer satisfaction, boost productivity and efficiency in PB projects, and boost the Chinese construction industry’s growth and competitiveness.
Copyright © by EnPress Publisher. All rights reserved.