The development of flexible, wearable electronic devices is one of the future directions of technology development. Flexible conductive materials are important supporting materials for wearable electronic devices. Polymer has excellent flexibility; it is an important way to prepare flexible conductors from polymer-based conductive composites. In this paper, the research progress of polymer-based flexible conductive composites is summarized in terms of preparation and characterization methods. The key factors to realize flexible conductors are put forward, namely, the maintenance of excellent polymer elasticity and the realization of stability. The design and preparation of the extensible conductor with high-elasticity matrix and nanofiller are introduced in detail, and the problems in the current research are summarized.
Fe3+-doped nano-TiO2 powders were prepared by sol-gel method. The photocatalytic activity of Fe3+-doped TiO2 nanoparticles was studied by using UV lamp as light source and methylene blue as degradation target. The photocatalytic activity of Fe3+-doped TiO2 was studied by degradation of 4L methylene blue solution with initial concentration of 10mg · L - 1. The results show that the photocatalytic activity of TiO2 can be improved by the addition of Fe3+. When the molar ratio of Fe3+ is 0.5-1%, the calcination temperature is 500 ℃. The photocatalytic degradation of methylene blue is the best.
With the progress of science and technology, the research and development of silver nanoparticles has also developed. This paper attempts to prepare a silver nanoparticle by electrolyzing AgNO3 solution with electrochemical reduction method and citric acid as a complexing agent in a certain current and time. The crystal morphology and sample purity of silver nanoparticles were analyzed by X-ray diffractometer. The crystal structure of the nanoparticles was analyzed by scanning electron microscopy (SEM). The crystal structure of the nanoparticles was analyzed by X-ray diffraction. The particle size distribution of the particles was in the range of 125-199 nm, and the carbon paste electrode was modified with the prepared silver nanoparticles. The electrocatalytic activity of the carbon paste electrode was preliminarily explored.
While there has been much discussion about the large infrastructure needs in Asia and the Pacific, less attention has been paid to public expenditure efficiency in infrastructure services delivery. New constructions are not the only solution, especially when governments have limited capital to invest. Globally, new infrastructure projects face delays and cost overruns, leading to an inefficient use of public resources. The root causes include the lack of transparency in project selection, the lack of project preparation, the silo approach by public entities in assessing feasibility studies, and the lack of public sector capacity to fully develop a bankable pipeline of projects. To tackle these issues, governments need a smarter investment approach and to do so, enhancing public service efficiency is very crucial. The paper suggests a “whole life cycle” (WLC) approach as the main strategic solution for the discussed issues and challenges. We expand the definition of WLC to include the entire life cycle of the infrastructure asset from need identification to its disposal. The stages comprise planning, preparation, procurement, design, construction, operation and maintenance, and disposal. This is because we believe any efficient or inefficient decision throughout such a wide life cycle influences the quality of public services. Hence, in this holistic approach, infrastructure life cycle consists of four phases: planning, preparation, procurement, and implementation. Governments could enhance public efficiency and thus improve access to finance throughout the WLC by several solutions. These are (i) preparing infrastructure master plan and pipelines and long-term budgeting during the planning phase; (ii) establishing framework and guidelines and improving governance during preparation phase; (iii) promoting standardization, transparency, open government, and contractual consistency during the procurement phase; and finally (iv) continued role of government and total asset management during the implementation phase. In addition to these phase-specific means, key WLC solutions include proper use of technology, capacity building, and private participation in general and public-private partnership (PPP) in particular.
In this paper, a new compound health drink of aloe and balsam pear was developed by using high-quality aloe and balsam pear as main raw materials and white granulated sugar and citric acid as auxiliary materials. The effects of the addition of aloe juice, balsam pear juice, white granulated sugar and citric acid on the sensory quality of the beverage were investigated and analyzed. On this basis, the orthogonal test was conducted to determine the best formula for the beverage. The results showed that the order of the factors affecting the quality of the finished product was the addition of aloe juice > white granulated sugar > citric acid > balsam pear juice; the optimal formula is 24% aloe juice, 10% balsam pear juice, 7% white granulated sugar and 0.09% citric acid and the resulting beverage was bright in color, sweet and sour with good flavor, and its physical, chemical and health indicators meet the national standards.
Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N2-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.
Copyright © by EnPress Publisher. All rights reserved.