Currently there is a great acceptance in medicine and dentistry that clinical practice should be “evidence-based” as much as possible. That is why multiple works have been published aimed at decreasing radiation doses in the different types of imaging modalities used in dentistry, since the greater effect of radiation, especially in children, forces us to take necessary measures to rationalize its use, especially with Cone Beam computed tomography (CBCT), the method that provides the highest doses in dentistry. This review was written using such an approach with the purpose of rationalizing the radiation dose in our patients. In order to formulate recommendations that contribute to the optimization of the use of ionizing radiation in dentistry, the SEDENTEXCT project team compiled and analyzed relevant publications in the literature, guidelines that have demonstrated their efficiency in the past, thus helping to see with different perspectives the dose received by patients, and with this, it is recommended taking into account this document so as to prescribe more adequately the complementary examinations that we use on a daily basis.
The optimized methodology and results of the new characterization in terms of dose and image quality of the X-ray system used in the main pediatric hemodynamics service in Chile are presented. In addition, scattered dose rate values at the operator’s eye level are reported for all acquisition modes available in different thicknesses of absorbent media and angiography. The characterization was performed according to the European DIMOND and SENTINEL protocols adapted to pediatric procedures. The air kerma at the entrance surface (ESAK) was measured and the image quality parameters signal-to-noise ratio (SNR) and a figure of merit (FOM) were calculated. The scattered dose rate was measured in personal dose equivalent units. The ESAK for fluoroscopic modes ranged from 0.2 to 35.6 μGy/image when passing from 4 to 20 cm of polymethyl methacrylate (PMMA). For the cine mode, these values ranged from 2.8 to 160.1 μGy/image. The values of the image quality parameters showed a correct system configuration, although abnormal values were observed in the medium fluoroscopic mode. As for the scattered dose rate at the level of the cardiologist’s eyes, the highest value is PMMA with a thickness of 20 cm, where the cine mode reached 9.41 mSv·h-1. The differences found from previous evaluations can be explained by the deterioration of the system and the change of one of the X-ray tubes.
Definitive diagnosis of Craniosynostosis (CS) with computed tomography (CT) is readily available, however, exposure to ionizing radiation is often a hard stop for parents and practitioners. Lowering head CT radiation exposure helps mitigate risks and improves diagnostic utilization. The purpose of the study is to quantify radiation exposure from head CT in patients with CS using a ‘new’ (ultra-low dose) protocol; compare prior standard CT protocol; summarize published reports on cumulative radiation doses from pediatric head CT scans utilizing other low-dose protocols. A retrospective study was conducted on patients undergoing surgical correction of CS, aged less than 2 years, between August 2014 and February 2022. Cumulative effective dose (CED) in mSv was calculated, descriptive statistics were performed, and mean ± SD was reported. A literature search was conducted describing cumulative radiation exposure from head CT in pediatric patients and analyzed for ionizing radiation measurements. Forty-four patients met inclusion criteria: 17 females and 27 males. Patients who obtained head CT using the ‘New’ protocol resulted in lower CED exposure of 0.32 mSv ± 0.07 compared to the prior standard protocol at 5.25 mSv ± 2.79 (p < 0.0001). Five studies specifically investigated the reduction of ionizing radiation from CT scans in patients with CS via the utilization of low-dose CT protocols. These studies displayed overall CED values ranging from 0.015 mSv to 0.77 mSv. Our new CT protocol resulted in 94% reduction of ionizing radiation. Ultra-low dose CT protocols provide similar diagnostic data without loss of bone differentiation in CS and can be easily incorporated into the workflow of a children’s hospital.
Copyright © by EnPress Publisher. All rights reserved.