The current manuscript overviews the potential of inimitable zero dimensional carbon nanoentities, i.e., nanodiamonds, in the form of hybrid nanostructures with allied nanocarbons such as graphene and carbon nanotube. Accordingly, two major categories of hybrid nanodiamond nanoadditives have been examined for nanocompositing, including nanodiamond-graphene or nanodiamond/graphene oxide and nanodiamond/carbon nanotubes. These exceptional nanodiamond derived bifunctional nanocarbon nanostructures depicted valuable structural and physical attributes (morphology, electrical, mechanical, thermal, etc.) owing to the combination of intrinsic features of nanodiamonds with other nanocarbons. Consequently, as per literature reported so far, noteworthy multifunctional hybrid nanodiamond-graphene, nanodiamond/graphene oxide, and nanodiamond/carbon nanotube nanoadditives have been argued for characteristics and potential advantages. Particularly, these nanodiamond derived hybrid nanoparticles based nanomaterials seem deployable in the fields of electromagnetic radiation shielding, electronic devices like field effect transistors, energy storing maneuvers namely supercapacitors, and biomedical utilizations for wound healing, tissue engineering, biosensing, etc. Nonetheless, restricted research traced up till now on hybrid nanodiamond-graphene and nanodiamond/carbon nanotube based nanocomposites, therefore, future research appears necessary for further precise design varieties, large scale processing, and advanced technological progresses.
Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
Copyright © by EnPress Publisher. All rights reserved.