The present study, developed under a quantitative approach, explanatory scope and causal correlational design, aims to determine the influence of invisible learning on the research competence of high school students in two private schools in the city of Lima, Peru, whose educational models seek to develop autonomous learning and research through discovery learning and experimentation. Two questionnaires were applied to 120 students of the VII cycle of basic education, one to measure the perception regarding invisible learning with 20 items and the other to measure investigative competencies with 21 items; both instruments underwent the corresponding validity and reliability tests before their application. Among the main findings, descriptive results were obtained at a medium level for both variables, the correlations found were significant and moderate, and as for influence, the coefficient of determination R2 yielded a value of 0.13, suggesting that 13% of investigative competence is predicted by invisible learning. These results show that autonomy, the use of digital technologies, metacognition and other aspects that are part of invisible learning prepare students to solve problems of varying complexity, allowing them to face the challenges of contemporary knowledge in an innovative and effective manner.
The objective of this work was to analyze the effect of the use of ChatGPT in the teaching-learning process of scientific research in engineering. Artificial intelligence (AI) is a topic of great interest in higher education, as it combines hardware, software and programming languages to implement deep learning procedures. We focused on a specific course on scientific research in engineering, in which we measured the competencies, expressed in terms of the indicators, mastery, comprehension and synthesis capacity, in students who decided to use or not ChatGPT for the development and fulfillment of their activities. The data were processed through the statistical T-Student test and box-and-whisker plots were constructed. The results show that students’ reliance on ChatGPT limits their engagement in acquiring knowledge related to scientific research. This research presents evidence indicating that engineering science research students rely on ChatGPT to replace their academic work and consequently, they do not act dynamically in the teaching-learning process, assuming a static role.
Copyright © by EnPress Publisher. All rights reserved.